根据通用 id 绑定行
Binding rows based on common id
我有一个非常简单的案例,我想根据特定数据框的公共 id 元素将多个数据框组合成一个。
示例:
id <- c(1, 2, 3)
x <- c(10, 12, 14)
data1 <- data.frame(id, x)
id <- c(2, 3)
x <- c(20, 22)
data2 <- data.frame(id, x)
id <- c(1, 3)
x <- c(30, 32)
data3 <- data.frame(id, x)
这给了我们,
$data1
id x
1 1 10
2 2 12
3 3 14
$data2
id x
1 2 20
2 3 22
$data3
id x
1 1 30
2 3 32
现在,我想根据 data3 的 ID 组合所有三个数据框。预期的输出应该像
> comb
id x
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
我正在尝试以下操作,但没有得到预期的输出。
library(dplyr)
library(tidyr)
combined <- bind_rows(data1, data2, data3, .id = "id") %>% arrange(id)
知道如何获得预期的输出吗?
bind_rows(data1, data2, data3, .id = 'grp')%>%
complete(id, grp)%>%
select(-grp) %>%
filter(id%in%data3$id)
# A tibble: 6 x 2
id x
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
这个有用吗:
library(dplyr)
library(tidyr)
data1 %>% full_join(data2, by = 'id') %>% full_join(data3, by = 'id') %>% arrange(id) %>% right_join(data3, by = 'id') %>%
pivot_longer(cols = -id) %>% select(-name) %>% distinct()
# A tibble: 6 x 2
id value
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
将 3 个数据帧合并到一个列表中,并仅使用 filter
到 select 第三个数据帧中的 id
。
library(dplyr)
library(tidyr)
bind_rows(data1, data2, data3, .id = "new_id") %>%
filter(id %in% id[new_id == 3]) %>%
complete(new_id, id)
# new_id id x
# <chr> <dbl> <dbl>
#1 1 1 10
#2 1 3 14
#3 2 1 NA
#4 2 3 22
#5 3 1 30
#6 3 3 32
一个纯基础的R解决方案也可以做到
lst <- list(data1, data2, data3)
reshape(
subset(
reshape(
do.call(rbind, Map(cbind, lst, grp = seq_along(lst))),
idvar = "id",
timevar = "grp",
direction = "wide"
),
id %in% lst[[3]]$id
),
idvar = "id",
varying = -1,
direction = "long"
)[c("id", "x")]
这给出了
id x
1.1 1 10
3.1 3 14
1.2 1 NA
3.2 3 22
1.3 1 30
3.3 3 32
>
使用base R
do.call(rbind, unname(lapply(mget(ls(pattern = "^data\d+$")), \(x) {
x1 <- subset(x, id %in% data3$id)
v1 <- setdiff(data3$id, x1$id)
if(length(v1) > 0) rbind(x1, cbind(id = v1, x = NA)) else x1
})))
-输出
id x
1 1 10
3 3 14
2 3 22
11 1 NA
12 1 30
21 3 32
我有一个非常简单的案例,我想根据特定数据框的公共 id 元素将多个数据框组合成一个。
示例:
id <- c(1, 2, 3)
x <- c(10, 12, 14)
data1 <- data.frame(id, x)
id <- c(2, 3)
x <- c(20, 22)
data2 <- data.frame(id, x)
id <- c(1, 3)
x <- c(30, 32)
data3 <- data.frame(id, x)
这给了我们,
$data1
id x
1 1 10
2 2 12
3 3 14
$data2
id x
1 2 20
2 3 22
$data3
id x
1 1 30
2 3 32
现在,我想根据 data3 的 ID 组合所有三个数据框。预期的输出应该像
> comb
id x
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
我正在尝试以下操作,但没有得到预期的输出。
library(dplyr)
library(tidyr)
combined <- bind_rows(data1, data2, data3, .id = "id") %>% arrange(id)
知道如何获得预期的输出吗?
bind_rows(data1, data2, data3, .id = 'grp')%>%
complete(id, grp)%>%
select(-grp) %>%
filter(id%in%data3$id)
# A tibble: 6 x 2
id x
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
这个有用吗:
library(dplyr)
library(tidyr)
data1 %>% full_join(data2, by = 'id') %>% full_join(data3, by = 'id') %>% arrange(id) %>% right_join(data3, by = 'id') %>%
pivot_longer(cols = -id) %>% select(-name) %>% distinct()
# A tibble: 6 x 2
id value
<dbl> <dbl>
1 1 10
2 1 NA
3 1 30
4 3 14
5 3 22
6 3 32
将 3 个数据帧合并到一个列表中,并仅使用 filter
到 select 第三个数据帧中的 id
。
library(dplyr)
library(tidyr)
bind_rows(data1, data2, data3, .id = "new_id") %>%
filter(id %in% id[new_id == 3]) %>%
complete(new_id, id)
# new_id id x
# <chr> <dbl> <dbl>
#1 1 1 10
#2 1 3 14
#3 2 1 NA
#4 2 3 22
#5 3 1 30
#6 3 3 32
一个纯基础的R解决方案也可以做到
lst <- list(data1, data2, data3)
reshape(
subset(
reshape(
do.call(rbind, Map(cbind, lst, grp = seq_along(lst))),
idvar = "id",
timevar = "grp",
direction = "wide"
),
id %in% lst[[3]]$id
),
idvar = "id",
varying = -1,
direction = "long"
)[c("id", "x")]
这给出了
id x
1.1 1 10
3.1 3 14
1.2 1 NA
3.2 3 22
1.3 1 30
3.3 3 32
>
使用base R
do.call(rbind, unname(lapply(mget(ls(pattern = "^data\d+$")), \(x) {
x1 <- subset(x, id %in% data3$id)
v1 <- setdiff(data3$id, x1$id)
if(length(v1) > 0) rbind(x1, cbind(id = v1, x = NA)) else x1
})))
-输出
id x
1 1 10
3 3 14
2 3 22
11 1 NA
12 1 30
21 3 32