Pandas: 如何用平均值填充缺失数据?

Pandas: how to fill missing data with a mean value?

我每 5 秒从远程设备读取一些数据。

它们保存为:

 2018-01-01 00:00:00    2
 2018-01-01 00:00:05    3
 2018-01-01 00:00:10    3
 2018-01-01 00:00:15    2
 2018-01-01 00:00:20    3
 2018-01-01 00:00:25    4
 2018-01-01 00:00:30    3
 2018-01-01 00:00:35    2
 2018-01-01 00:00:40    4
 2018-01-01 00:00:45    5
 2018-01-01 00:00:50    3
 2018-01-01 00:00:55    3

唉,沟通不是最好的,有时候沟通不通。

在这种情况下,远程设备将尽快提供数据的累积值

之前的数据可以保存为:

 2018-01-01 00:00:00     2
 2018-01-01 00:00:05     3
 2018-01-01 00:00:10     3
 .......... 00:00:15  missing...
 .......... 00:00:20  missing...
 .......... 00:00:25  missing...
 2018-01-01 00:00:30    12      <--- sum of the last 4 readings 
 2018-01-01 00:00:35     2
 .......... 00:00:40  missing...
 .......... 00:00:45  missing...
 2018-01-01 00:00:50    15      <--- sum of the last 3 readings
 2018-01-01 00:00:55     3

我需要填充所有缺失的行并删除原始数据中的 peaks,并使用 mean value 计算 =]峰值.

重采样很容易:

 2018-01-01 00:00:00      2
 2018-01-01 00:00:05      3
 2018-01-01 00:00:10      3
 2018-01-01 00:00:15    NaN
 2018-01-01 00:00:20    NaN
 2018-01-01 00:00:25    NaN
 2018-01-01 00:00:30     12
 2018-01-01 00:00:35      2
 2018-01-01 00:00:40    NaN
 2018-01-01 00:00:45    NaN
 2018-01-01 00:00:50     15
 2018-01-01 00:00:55      3

但是如何填充 NaN 并移除峰值?

我检查了 asfreqresample 的各种方法,但其中 none(bfillffill)在这种情况下很有用。

最终结果应该是:

 2018-01-01 00:00:00      2
 2018-01-01 00:00:05      3
 2018-01-01 00:00:10      3
 2018-01-01 00:00:15      3 <--- NaN filled with mean = peak 12/4 rows
 2018-01-01 00:00:20      3 <--- NaN filled with mean
 2018-01-01 00:00:25      3 <--- NaN filled with mean
 2018-01-01 00:00:30      3 <--- peak changed
 2018-01-01 00:00:35      2
 2018-01-01 00:00:40      5  <--- NaN filled with mean = peak 15/3 rows
 2018-01-01 00:00:45      5  <--- NaN filled with mean
 2018-01-01 00:00:50      5  <--- peak changed
 2018-01-01 00:00:55      3

我用于测试的数据帧:

import numpy as np
import pandas as pd

time = pd.date_range(start='2021-01-01', freq='5s', periods=12)
read_data = pd.Series([2, 3, 3, np.nan, np.nan, np.nan, 12, 2, np.nan, np.nan, 15, 3], index=time).dropna()

read_data.asfreq("5s")

一种方式:

m = (read_data.isna() | read_data.shift(fill_value= 0).isna()).astype(int)
read_data = read_data.bfill() / m.groupby(m.ne(m.shift()).cumsum()).transform('count').where(m.eq(1), 1)

输出:

2021-01-01 00:00:00    2.0
2021-01-01 00:00:05    3.0
2021-01-01 00:00:10    3.0
2021-01-01 00:00:15    3.0
2021-01-01 00:00:20    3.0
2021-01-01 00:00:25    3.0
2021-01-01 00:00:30    3.0
2021-01-01 00:00:35    2.0
2021-01-01 00:00:40    5.0
2021-01-01 00:00:45    5.0
2021-01-01 00:00:50    5.0
2021-01-01 00:00:55    3.0
Freq: 5S, dtype: float64

完整示例:

import numpy as np
import pandas as pd

time = pd.date_range(start='2021-01-01', freq='5s', periods=12)
read_data = pd.Series([2, 3, 3, np.nan, np.nan, np.nan, 12, 2, np.nan, np.nan, 15, 3], index=time).dropna()

read_data = read_data.asfreq("5s")

m = (read_data.isna() | read_data.shift(fill_value= 0).isna()).astype(int)
read_data = read_data.bfill() / m.groupby(m.ne(m.shift()).cumsum()).transform('count').where(m.eq(1), 1)

这可以通过分割(分组缺失值连同其对应的峰值(重采样后)成一个单一的分组,回填,然后计算每组的平均值:

>>> read_data = read_data.to_frame(name='val').assign(idx=range(len(read_data)))
>>> read_data = read_data.asfreq('5s').bfill()
>>> read_data = read_data/read_data.groupby('idx').transform(len)
>>> read_data.drop('idx', axis=1, inplace=True)
>>> read_data.val
2021-01-01 00:00:00    2.0
2021-01-01 00:00:05    3.0
2021-01-01 00:00:10    3.0
2021-01-01 00:00:15    3.0
2021-01-01 00:00:20    3.0
2021-01-01 00:00:25    3.0
2021-01-01 00:00:30    3.0
2021-01-01 00:00:35    2.0
2021-01-01 00:00:40    5.0
2021-01-01 00:00:45    5.0
2021-01-01 00:00:50    5.0
2021-01-01 00:00:55    3.0
Freq: 5S, Name: val, dtype: float64

解释:

首先将您的原始系列转换为数据框并引入另一列 idx 它将每一行唯一标识为单个组:

>>> read_data = read_data.to_frame(name='val').assign(idx=range(len(read_data)))
>>> read_data
                      val  idx
2021-01-01 00:00:00   2.0    0
2021-01-01 00:00:05   3.0    1
2021-01-01 00:00:10   3.0    2
2021-01-01 00:00:30  12.0    3
2021-01-01 00:00:35   2.0    4
2021-01-01 00:00:50  15.0    5
2021-01-01 00:00:55   3.0    6

重新采样以插入缺失值,然后用峰值回填缺失值:

>>> read_data = read_data.asfreq('5s').bfill()
>>> read_data
                      val  idx
2021-01-01 00:00:00   2.0  0.0
2021-01-01 00:00:05   3.0  1.0
2021-01-01 00:00:10   3.0  2.0
2021-01-01 00:00:15  12.0  3.0
2021-01-01 00:00:20  12.0  3.0
2021-01-01 00:00:25  12.0  3.0
2021-01-01 00:00:30  12.0  3.0
2021-01-01 00:00:35   2.0  4.0
2021-01-01 00:00:40  15.0  5.0
2021-01-01 00:00:45  15.0  5.0
2021-01-01 00:00:50  15.0  5.0
2021-01-01 00:00:55   3.0  6.0

如您现在所见,回填值与其峰值在同一组中(具有相同的 idx)。
所以 groupby idx 然后将值除以每组的长度。删除 idx 列:

>>> read_data = read_data/read_data.groupby('idx').transform(len)
>>> read_data.drop('idx', axis=1, inplace=True)
>>> read_data
                     val
2021-01-01 00:00:00  2.0
2021-01-01 00:00:05  3.0
2021-01-01 00:00:10  3.0
2021-01-01 00:00:15  3.0
2021-01-01 00:00:20  3.0
2021-01-01 00:00:25  3.0
2021-01-01 00:00:30  3.0
2021-01-01 00:00:35  2.0
2021-01-01 00:00:40  5.0
2021-01-01 00:00:45  5.0
2021-01-01 00:00:50  5.0
2021-01-01 00:00:55  3.0