'Seq2SeqModelOutput' 对象没有属性 'logits' BART 转换器

'Seq2SeqModelOutput' object has no attribute 'logits' BART transformers

我正在尝试生成长 PDF 的摘要。所以,我所做的是,首先我使用 pdfminer.six 库将我的 pdf 转换为文本。接下来,我使用了讨论 here.

中提供的 2 个函数

代码:

bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
bart_model = BartModel.from_pretrained("facebook/bart-large", return_dict=True)

# generate chunks of text \ sentences <= 1024 tokens
def nest_sentences(document):
  nested = []
  sent = []
  length = 0
  for sentence in nltk.sent_tokenize(document):
    length += len(sentence)
    if length < 1024:
      sent.append(sentence)
    else:
      nested.append(sent)
      sent = [sentence]
      length = len(sentence)

  if sent:
    nested.append(sent)
  return nested

# generate summary on text with <= 1024 tokens
def generate_summary(nested_sentences):
  device = 'cuda'
  summaries = []
  for nested in nested_sentences:
    input_tokenized = bart_tokenizer.encode(' '.join(nested), truncation=True, return_tensors='pt')
    input_tokenized = input_tokenized.to(device)
    summary_ids = bart_model.to(device).generate(
        input_tokenized,
        length_penalty=3.0,
        min_length=30,
        max_length=100,
    )
    output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
    summaries.append(output)
  summaries = [sentence for sublist in summaries for sentence in sublist]
  return summaries

然后,为了获得摘要,我这样做:

nested_sentences = nest_sentences(text)

其中,text是我使用pdf库转换的长度在10K左右的字符串文本。

summary = generate_summary(nested_sentences)

然后,我得到以下错误:

---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

<ipython-input-15-d5aa7709bb5f> in <module>()
----> 1 summary = generate_summary(nested_sentences)

3 frames

<ipython-input-11-8554509269e0> in generate_summary(nested_sentences)
     28         length_penalty=3.0,
     29         min_length=30,
---> 30         max_length=100,
     31     )
     32     output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]

/usr/local/lib/python3.7/dist-packages/torch/autograd/grad_mode.py in decorate_context(*args, **kwargs)
     26         def decorate_context(*args, **kwargs):
     27             with self.__class__():
---> 28                 return func(*args, **kwargs)
     29         return cast(F, decorate_context)
     30 

/usr/local/lib/python3.7/dist-packages/transformers/generation_utils.py in generate(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs)
   1061                 return_dict_in_generate=return_dict_in_generate,
   1062                 synced_gpus=synced_gpus,
-> 1063                 **model_kwargs,
   1064             )
   1065 

/usr/local/lib/python3.7/dist-packages/transformers/generation_utils.py in beam_search(self, input_ids, beam_scorer, logits_processor, stopping_criteria, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs)
   1799                 continue  # don't waste resources running the code we don't need
   1800 
-> 1801             next_token_logits = outputs.logits[:, -1, :]
   1802 
   1803             # hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`

AttributeError: 'Seq2SeqModelOutput' object has no attribute 'logits'


我找不到与此错误相关的任何信息,所以如果有人能提供帮助或者是否有更好的方法来为长文本生成摘要,我将不胜感激?

提前致谢!

这里的问题是 BartModel 行。将此切换为 BartForConditionalGeneration class 问题将得到解决。本质上,生成实用程序假设它是一个可用于语言生成的模型,在这种情况下,BartModel 只是没有 LM 头的基础。