使用 Pandas Dataframe 对可变时间段的天气数据进行重采样

Resampling of Weather Data for variable timeperiods by using Pandas Dataframe

我一直在尝试创建一个通用的天气导入器,它可以对数据进行重新采样以设置间隔(例如,从 20 分钟到几小时等(我在下面的代码中使用了 60 分钟))。 为此,我想使用 Pandas 重采样函数。经过一番困惑后,我想出了下面的代码(这不是最漂亮的代码)。我遇到了一个关于设定时间段内风向平均的问题,我试图用 pandas' resampler.apply.

来解决这个问题

但是,我遇到了一个定义问题,它给出了以下 错误: 类型错误:无法将复数转换为浮点数

我意识到我正在尝试将方钉强行插入圆孔中,但我不知道如何克服这个问题。任何提示将不胜感激。

raw data

import pandas as pd
import os
from datetime import datetime
from pandas import ExcelWriter
from math import *

os.chdir('C:\test')
file = 'bom.csv'
df = pd.read_csv(file,skiprows=0, low_memory=False)

#custom dataframe reampler (.resampler.apply) 
def custom_resampler(thetalist):
    try:
        s=0
        c=0
        n=0.0
        for theta in thetalist:
            s=s+sin(radians(theta))
            c=c+cos(radians(theta))
            n+=1
        s=s/n
        c=c/n
        eps=(1-(s**2+c**2))**0.5
        sigma=asin(eps)*(1+(2.0/3.0**0.5-1)*eps**3)
    except ZeroDivisionError:
        sigma=0
    return degrees(sigma)

# create time index and format dataframes
df['DateTime'] = pd.to_datetime(df['DateTime'],format='%d/%m/%Y %H:%M')
df.index = df['DateTime']
df = df.drop(['Year','Month', 'Date', 'Hour', 'Minutes','DateTime'], axis=1)
dfws = df
dfwdd = df
dfws = dfws.drop(['WDD'], axis=1)
dfwdd = dfwdd.drop(['WS'], axis=1)

#resample data to xxmin and merge data
dfwdd = dfwdd.resample('60T').apply(custom_resampler)
dfws = dfws.resample('60T').mean()
dfoutput = pd.merge(dfws, dfwdd, right_index=True, left_index=True)

# write series to Excel
writer = pd.ExcelWriter('bom_out.xlsx', engine='openpyxl') 
dfoutput.to_excel(writer, sheet_name='bom_out')
writer.save()

做了更多研究,发现更改定义效果最好。 然而,这通过相反的角度(180 度)划分给出了一个奇怪的结果,这是我偶然发现的。我不得不扣除一个小值,这会给实际结果带来一定程度的误差。

我仍然有兴趣知道:

  1. 复杂的数学题做错了什么
  2. 对角(180度)更好的解决方案
# changed the imports
from math import sin,cos,atan2,pi
import numpy as np

#changed the definition
def custom_resampler(angles,weights=0,setting='degrees'):
    '''computes the mean angle'''
    if weights==0:
         weights=np.ones(len(angles))
    sumsin=0
    sumcos=0
    if setting=='degrees':
        angles=np.array(angles)*pi/180
    for i in range(len(angles)):
        sumsin+=weights[i]/sum(weights)*sin(angles[i])
        sumcos+=weights[i]/sum(weights)*cos(angles[i])
    average=atan2(sumsin,sumcos)
    if setting=='degrees':
        average=average*180/pi
        if average == 180 or average == -180: #added since 290 degrees and 110degrees average gave a weird outcome
            average -= 0.1
        elif average < 0:
            average += 360
    return round(average,1)