将 pandas 数据框日期列拆分为 start_date & end)date 按组
Split pandas dataframe date column into start_date & end)date by group
我有一个看起来像这样的数据框:
S.No date origin dest journeytype
1 2021-10-21 FKG HYM OP
2 2021-10-21 FKG HYM PK
3 2021-10-21 HYM LDS OP
4 2021-10-22 FKG HYM OP
5 2021-10-22 FKG HYM PK
6 2021-10-22 HYM LDS OP
7 2021-10-23 FKG HYM OP
8 2021-10-24 AVM BLA OP
9 2021-10-24 AVM DBL OP
10 2021-10-27 AVM BLA OP
我需要将各个出发地、目的地和旅程类型拆分为各个起点和 end_date 列。
上述输入的输出数据框应如下所示:
start_date end_date origin dest journeytype
2021-10-21 2021-10-23 FKG HYM OP
2021-10-21 2021-10-22 FKG HYM PK
2021-10-21 2021-10-22 HYM LDS OP
2021-10-24 2021-10-24 AVM BLA OP
2021-10-24 2021-10-24 AVM DBL OP
2021-10-27 2021-10-27 AVM BLA OP
此外,如果任何组的日期不连续,则它们需要在结果中显示为单独的记录
如有必要,将列转换为日期时间,然后按 GroupBy.agg
聚合 min
和 max
,最后按列表更改列顺序:
df['date'] = pd.to_datetime(df['date'])
df = (df.groupby(['origin','dest','journeytype'], sort=False)['date']
.agg(start_date='min', end_date='max')
.reset_index())
df = df[['start_date', 'end_date','origin', 'dest', 'journeytype']]
print (df)
start_date end_date origin dest journeytype
0 2021-10-21 2021-10-23 FKG HYM OP
1 2021-10-21 2021-10-22 FKG HYM PK
2 2021-10-21 2021-10-22 HYM LDS OP
3 2021-10-24 2021-10-24 AVM BLA OP
4 2021-10-24 2021-10-24 AVM DBL OP
5 2021-10-24 2021-10-24 AVM DKD OP
我有一个看起来像这样的数据框:
S.No date origin dest journeytype
1 2021-10-21 FKG HYM OP
2 2021-10-21 FKG HYM PK
3 2021-10-21 HYM LDS OP
4 2021-10-22 FKG HYM OP
5 2021-10-22 FKG HYM PK
6 2021-10-22 HYM LDS OP
7 2021-10-23 FKG HYM OP
8 2021-10-24 AVM BLA OP
9 2021-10-24 AVM DBL OP
10 2021-10-27 AVM BLA OP
我需要将各个出发地、目的地和旅程类型拆分为各个起点和 end_date 列。
上述输入的输出数据框应如下所示:
start_date end_date origin dest journeytype
2021-10-21 2021-10-23 FKG HYM OP
2021-10-21 2021-10-22 FKG HYM PK
2021-10-21 2021-10-22 HYM LDS OP
2021-10-24 2021-10-24 AVM BLA OP
2021-10-24 2021-10-24 AVM DBL OP
2021-10-27 2021-10-27 AVM BLA OP
此外,如果任何组的日期不连续,则它们需要在结果中显示为单独的记录
如有必要,将列转换为日期时间,然后按 GroupBy.agg
聚合 min
和 max
,最后按列表更改列顺序:
df['date'] = pd.to_datetime(df['date'])
df = (df.groupby(['origin','dest','journeytype'], sort=False)['date']
.agg(start_date='min', end_date='max')
.reset_index())
df = df[['start_date', 'end_date','origin', 'dest', 'journeytype']]
print (df)
start_date end_date origin dest journeytype
0 2021-10-21 2021-10-23 FKG HYM OP
1 2021-10-21 2021-10-22 FKG HYM PK
2 2021-10-21 2021-10-22 HYM LDS OP
3 2021-10-24 2021-10-24 AVM BLA OP
4 2021-10-24 2021-10-24 AVM DBL OP
5 2021-10-24 2021-10-24 AVM DKD OP