按名称选择数据框变量并与向量元素相乘
Choose dataframe variables by name and multiply with a vector elementwise
我有一个数据框和一个向量如下:
my_df <- as.data.frame(
list(year = c(2001, 2001, 2001, 2001, 2001, 2001), month = c(1,
2, 3, 4, 5, 6), Pdt_d0 = c(0.379045935402736, 0.377328817455841,
0.341158889847019, 0.36761990427443, 0.372442657083218, 0.382702189949558
), Pdt_d1 = c(0.146034519173855, 0.166289573095497, 0.197787188740911,
0.137071647982617, 0.162103042313547, 0.168566518193772), Pdt_d2 = c(0.126975939811326,
0.107708783271871, 0.14096203677089, 0.142228236885706, 0.115542396064519,
0.106935751726809), Pdt_tot = c(2846715, 2897849.5, 2935406.25,
2850649, 2840313.75, 3087993.5))
)
my_vec <- 1:3
我想将 Pdt_d0:Pdt_d2
与 my_vec
中的相应元素相乘,同时保持其他列不变。我可以通过 dplyr::select(my_df, num_range("Pdt_d", 0:2)) %>% mapply(``*``, ., my_vec)
获得所需的乘法,但在此过程中我丢失了 year, month, Pdt_tot
列。我试图通过 dplyr::select(my_df, num_range("Pdt_d", 0:2)) <- dplyr::select(my_df, num_range("Pdt_d", 0:2)) %>% mapply(``*``, ., my_vec)
实现我的目标,其中 returns 一个错误 'select<-' is not an exported object
。有没有我没看到的明显技巧?
我不认为我的问题是重复的;我在 here and 中看到了答案,但是这两个问题都不允许我按名称选择变量
我不认为你想做这个烂摊子,但它确实有效。
library(dplyr)
library(tidyr)
my_df %>%
gather(variable, value, -year,-month,-Pdt_tot) %>%
group_by(year, month, Pdt_tot) %>%
mutate(value = value * my_vector) %>%
spread(variable,value)
year month Pdt_tot Pdt_d0 Pdt_d1 Pdt_d2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2001 1 2846715 0.379 0.292 0.381
2 2001 2 2897850. 0.377 0.333 0.323
3 2001 3 2935406. 0.341 0.396 0.423
4 2001 4 2850649 0.368 0.274 0.427
5 2001 5 2840314. 0.372 0.324 0.347
6 2001 6 3087994. 0.383 0.337 0.321
未指定 year
、month
和 Pdt_tot
是,
my_df %>%
gather(variable, value, - !num_range("Pdt_d", 0:2)) %>%
group_by(across(c(-variable, -value))) %>%
mutate(value = value * my_vector) %>%
spread(variable, value)
year month Pdt_tot Pdt_d0 Pdt_d1 Pdt_d2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2001 1 2846715 0.379 0.292 0.381
2 2001 2 2897850. 0.377 0.333 0.323
3 2001 3 2935406. 0.341 0.396 0.423
4 2001 4 2850649 0.368 0.274 0.427
5 2001 5 2840314. 0.372 0.324 0.347
6 2001 6 3087994. 0.383 0.337 0.321
您可以使用您在 tidy 世界之外尝试过的由右侧 Map/mapply
逻辑覆盖的左侧:
vars <- paste0("Pdt_d", 0:2)
my_df[vars] <- Map(`*`, my_df[vars], my_vec)
my_df
# year month Pdt_d0 Pdt_d1 Pdt_d2 Pdt_tot
#1 2001 1 0.3790459 0.2920690 0.3809278 2846715
#2 2001 2 0.3773288 0.3325791 0.3231263 2897850
#3 2001 3 0.3411589 0.3955744 0.4228861 2935406
#4 2001 4 0.3676199 0.2741433 0.4266847 2850649
#5 2001 5 0.3724427 0.3242061 0.3466272 2840314
#6 2001 6 0.3827022 0.3371330 0.3208073 3087994
之所以有效,是因为 [<-
在 R 中作为函数存在,用于通过方括号分配给左侧选择,例如 my_df[]
.
返回的错误是因为代码左侧有一个 select()
函数,而没有 'select<-'
函数。即,您不能分配给 select()
-ion,因为它没有设置为那样工作。整洁的函数通常希望像 my_df %>% select() %>% etc
一样进行管道传输,而不会覆盖原始输入。
我有一个数据框和一个向量如下:
my_df <- as.data.frame(
list(year = c(2001, 2001, 2001, 2001, 2001, 2001), month = c(1,
2, 3, 4, 5, 6), Pdt_d0 = c(0.379045935402736, 0.377328817455841,
0.341158889847019, 0.36761990427443, 0.372442657083218, 0.382702189949558
), Pdt_d1 = c(0.146034519173855, 0.166289573095497, 0.197787188740911,
0.137071647982617, 0.162103042313547, 0.168566518193772), Pdt_d2 = c(0.126975939811326,
0.107708783271871, 0.14096203677089, 0.142228236885706, 0.115542396064519,
0.106935751726809), Pdt_tot = c(2846715, 2897849.5, 2935406.25,
2850649, 2840313.75, 3087993.5))
)
my_vec <- 1:3
我想将 Pdt_d0:Pdt_d2
与 my_vec
中的相应元素相乘,同时保持其他列不变。我可以通过 dplyr::select(my_df, num_range("Pdt_d", 0:2)) %>% mapply(``*``, ., my_vec)
获得所需的乘法,但在此过程中我丢失了 year, month, Pdt_tot
列。我试图通过 dplyr::select(my_df, num_range("Pdt_d", 0:2)) <- dplyr::select(my_df, num_range("Pdt_d", 0:2)) %>% mapply(``*``, ., my_vec)
实现我的目标,其中 returns 一个错误 'select<-' is not an exported object
。有没有我没看到的明显技巧?
我不认为我的问题是重复的;我在 here and
我不认为你想做这个烂摊子,但它确实有效。
library(dplyr)
library(tidyr)
my_df %>%
gather(variable, value, -year,-month,-Pdt_tot) %>%
group_by(year, month, Pdt_tot) %>%
mutate(value = value * my_vector) %>%
spread(variable,value)
year month Pdt_tot Pdt_d0 Pdt_d1 Pdt_d2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2001 1 2846715 0.379 0.292 0.381
2 2001 2 2897850. 0.377 0.333 0.323
3 2001 3 2935406. 0.341 0.396 0.423
4 2001 4 2850649 0.368 0.274 0.427
5 2001 5 2840314. 0.372 0.324 0.347
6 2001 6 3087994. 0.383 0.337 0.321
未指定 year
、month
和 Pdt_tot
是,
my_df %>%
gather(variable, value, - !num_range("Pdt_d", 0:2)) %>%
group_by(across(c(-variable, -value))) %>%
mutate(value = value * my_vector) %>%
spread(variable, value)
year month Pdt_tot Pdt_d0 Pdt_d1 Pdt_d2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2001 1 2846715 0.379 0.292 0.381
2 2001 2 2897850. 0.377 0.333 0.323
3 2001 3 2935406. 0.341 0.396 0.423
4 2001 4 2850649 0.368 0.274 0.427
5 2001 5 2840314. 0.372 0.324 0.347
6 2001 6 3087994. 0.383 0.337 0.321
您可以使用您在 tidy 世界之外尝试过的由右侧 Map/mapply
逻辑覆盖的左侧:
vars <- paste0("Pdt_d", 0:2)
my_df[vars] <- Map(`*`, my_df[vars], my_vec)
my_df
# year month Pdt_d0 Pdt_d1 Pdt_d2 Pdt_tot
#1 2001 1 0.3790459 0.2920690 0.3809278 2846715
#2 2001 2 0.3773288 0.3325791 0.3231263 2897850
#3 2001 3 0.3411589 0.3955744 0.4228861 2935406
#4 2001 4 0.3676199 0.2741433 0.4266847 2850649
#5 2001 5 0.3724427 0.3242061 0.3466272 2840314
#6 2001 6 0.3827022 0.3371330 0.3208073 3087994
之所以有效,是因为 [<-
在 R 中作为函数存在,用于通过方括号分配给左侧选择,例如 my_df[]
.
返回的错误是因为代码左侧有一个 select()
函数,而没有 'select<-'
函数。即,您不能分配给 select()
-ion,因为它没有设置为那样工作。整洁的函数通常希望像 my_df %>% select() %>% etc
一样进行管道传输,而不会覆盖原始输入。