Pyspark:根据另一个数组列更改数组列中的值

Pyspark: change values in an array column based on another array column

我有以下 pyspark 数据框:

root
 |-- tokens: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- posTags: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- dependencies: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- labelledDependencies: array (nullable = true)
 |    |-- element: string (containsNull = true)

以数据为例

+------------------------------+---------------------------+-----------------------------------+--------------------------------------------+
|tokens                        |posTags                    |dependencies                       |labelledDependencies                        |
+------------------------------+---------------------------+-----------------------------------+--------------------------------------------+
|[i, try, to, get, my, balance]|[NNP, VB, TO, VB, PRP$, NN]|[try, ROOT, get, try, balance, get]|[nsubj, root, mark, parataxis, appos, nsubj]|
+------------------------------+---------------------------+-----------------------------------+--------------------------------------------+

我想将令牌余额的标记依赖从 nsubj 更改为 dobj。

我的逻辑是这样的: 如果您找到标记的依赖项 nsubj 并且令牌具有 POS 标签 NN 并且令牌依赖于具有 POS 标签 VB 的令牌(获取)然后将 nsubj 更改为 dobj.

我可以使用以下函数来做到这一点:

def change_things(tokens,posTags,dependencies,labelledDependencies):
    for i in range(0,len(labelledDependencies)):
        if labelledDependencies[i] == 'nsubj':
            if posTags[i] == 'NN':
                if posTags[tokens.index(dependencies[i])] == 'VB':
                    labelledDependencies[i] = 'dobj'
    return tokens,posTags,dependencies,labelledDependencies

甚至可能将其注册为 udf。

但是,我的问题是如何在不使用 udf 而只使用 pyspark 内置方法的情况下做到这一点。

您可以使用 Spark 内置的 transform 函数:

import pyspark.sql.functions as F

df2 = df.withColumn(
    "labelledDependencies",
    F.expr("""transform(
            labelledDependencies, 
            (x, i) -> CASE WHEN x = 'nsubj' 
                                AND posTags[i] = 'NN' 
                                AND posTags[array_position(tokens, dependencies[i]) - 1] = 'VB' 
                           THEN 'dobj'
                           ELSE x
                      END
        )
    """)
)



df2.show(1, False)
#+------------------------------+---------------------------+-----------------------------------+-------------------------------------------+
#|tokens                        |posTags                    |dependencies                       |labelledDependencies                       |
#+------------------------------+---------------------------+-----------------------------------+-------------------------------------------+
#|[i, try, to, get, my, balance]|[NNP, VB, TO, VB, PRP$, NN]|[try, ROOT, get, try, balance, get]|[nsubj, root, mark, parataxis, appos, dobj]|
#+------------------------------+---------------------------+-----------------------------------+-------------------------------------------+