cuda 内核通过增加网格大小给出不正确的结果

cuda kernel gives incorrect results by grid size increase

我正在测试一个简单的 CUDA 计时算法,我遇到了一个案例,当我增加内核的网格大小时,它给出了错误的结果:

#include <unistd.h>
#include <stdio.h>
#include <assert.h>

/* we need these includes for CUDA's random number stuff */
#include <curand.h>
#include <curand_kernel.h>

#define MAX 10

#ifdef GRID
    #define REPEAT GRID
#else 
    #define REPEAT 65535  
#endif  

#ifdef VECSIZE
    #define SIZE VECSIZE 
#else 
    #define SIZE 1024  
#endif 


__global__ void random(int *result) {

    curandState_t state;
    curand_init(100, 0, threadIdx.x, &state);
    result[threadIdx.x] = curand(&state) % MAX;
    //printf("th %d random %d\n", threadIdx.x, *result);
}

__global__ void myadd(const int *in, int *sum) {
    sum[blockIdx.x] = 0;
    //printf("thread %d value %d\n",threadIdx.x,  in[threadIdx.x]);
    atomicAdd_block(&sum[blockIdx.x], in[threadIdx.x]);
    //atomicAdd(sum, in[threadIdx.x]);
}

int main() {
    int check = 0;
    /* allocate an int on the GPU */
    int *x = new int[SIZE];
    int *sum = new int[REPEAT];
    int *d_x, *d_sum;
    cudaMalloc(&d_x, sizeof(int) * SIZE);
    cudaMalloc(&d_sum, sizeof(int) * REPEAT);

    /* invoke the GPU to initialize all of the random states */
    random<<<1, SIZE>>>(d_x);

    myadd<<<REPEAT, SIZE>>>(d_x, d_sum);  
    cudaDeviceSynchronize();
        /* copy the random number back */
    cudaMemcpy(x, d_x, sizeof(int) * SIZE, cudaMemcpyDeviceToHost);
    cudaMemcpy(sum, d_sum, sizeof(int)* REPEAT, cudaMemcpyDeviceToHost);

    for (int i = 0; i < SIZE; ++i) {
        check += x[i];
        //printf("Random[%d] = %d\n", i, x[i]);
    }

    cudaError_t err = cudaGetLastError(); // Get error code

    if (err != cudaSuccess) {
        printf("CUDA Error: %s\n", cudaGetErrorString(err));
        exit(-1);
    }

    for (int i = 0; i < REPEAT; ++i) {
        printf("i %d check %d  sum[i] %d\n", i, check, sum[i]);
        assert(check == sum[i]);        
    }
        /* free the memory we allocated */
    cudaFree(d_x);
    cudaFree(d_sum);
    delete[] x;
    delete[] sum;

    return 0;
}

我的显卡是V100,计算能力7.0。如您所见,我可以使用 nvcc test.cu -arch=sm_70 -O3 -g -G -DGRID=1024 -DVECSIZE=512 编译具有不同网格和矢量大小的上述代码,对于小矢量和网格大小,一切看起来都不错,但是当我将网格大小增加到最大 (65535) 时,有时计算的总和值为不正确。例如:

.
.
.
i 511 check 2331  sum[i] 2331
i 512 check 2331  sum[i] 2331
i 513 check 2331  sum[i] 2188
a.out: test.cu:87: int main(): Assertion `check == sum[i]' failed.

内核中存在竞争条件 myadd。总和只能设置为 0 一次。并且在其他一些线程向其添加值后,不应将其设置为 0。

__global__ void myadd(const int *in, int *sum) {
    if(threadIdx.x == 0){
        sum[blockIdx.x] = 0;
    }
    __syncthreads(); // all threads wait until sum is initialized with 0

    atomicAdd_block(&sum[blockIdx.x], in[threadIdx.x]);
}

如果你想正确地为你的代码计时,你应该删除 -G 编译器标志。