使用列表中的随机值在 Pyspark 中创建数据框

Create a dataframe in Pyspark using random values from a list

我需要将此代码转换为 PySpark 等效代码。我无法使用 pandas 创建数据框。

这就是我使用 Pandas 创建数据框的方式:

df['Name'] = np.random.choice(["Alex","James","Michael","Peter","Harry"], size=3)
df['ID'] = np.random.randint(1, 10, 3)
df['Fruit'] = np.random.choice(["Apple","Grapes","Orange","Pear","Kiwi"], size=3)

PySpark 中的数据框应如下所示:

df

Name   ID  Fruit
Alex   3   Apple
James  6   Grapes
Harry  5   Pear

我已针对 1 列尝试了以下操作:

sdf1 = spark.createDataFrame([(k,) for k in ['Alex','James', 'Harry']]).orderBy(rand()).limit(6).show()
names = np.random.choice(["Alex","James","Michael","Peter","Harry"], size=3)
id = np.random.randint(1, 10, 3)
fruits = np.random.choice(["Apple","Grapes","Orange","Pear","Kiwi"], size=3)
columns = ['Name', 'ID', "Fruit"]
  
dataframe = spark.createDataFrame(zip(names, id, fruits), columns)

dataframe.show()

您可以先创建 pandas 数据帧,然后将其转换为 Pyspark 数据帧。或者您可以压缩 3 个随机 numpy 数组并像这样创建 spark 数据帧:

import numpy as np

names = [str(x) for x in np.random.choice(["Alex", "James", "Michael", "Peter", "Harry"], size=3)]
ids = [int(x) for x in np.random.randint(1, 10, 3)]
fruits = [str(x) for x in np.random.choice(["Apple", "Grapes", "Orange", "Pear", "Kiwi"], size=3)]

df = spark.createDataFrame(list(zip(names, ids, fruits)), ["Name", "ID", "Fruit"])

df.show()

#+-------+---+------+
#|   Name| ID| Fruit|
#+-------+---+------+
#|  Peter|  8|  Pear|
#|Michael|  7|  Kiwi|
#|  Harry|  4|Orange|
#+-------+---+------+