使用 pandas read_html 抓取时将 table 行分隔为 2

Separate table row to 2 when scraping with pandas read_html

使用 pandas read_html() 时无法正确获取 格式。我正在寻找对方法本身或底层 html(通过 bs4 删除)进行调整以获得所需的输出。

当前输出:

(注意是1行包含两种类型的数据。理想情况下应该分成2行如下)

期望:

复制问题的代码:

import requests
import pandas as pd
from bs4 import BeautifulSoup  # alternatively

url = "http://ufcstats.com/fight-details/bb15c0a2911043bd"

df = pd.read_html(url)[-1]  # last table
df.columns = [str(i) for i in range(len(df.columns))]

# to get the html via bs4
headers = {
    "Access-Control-Allow-Origin": "*",
    "Access-Control-Allow-Methods": "GET",
    "Access-Control-Allow-Headers": "Content-Type",
    "Access-Control-Max-Age": "3600",
    "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
}
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, "html.parser")
table_html = soup.find_all("table", {"class": "b-fight-details__table"})[-1]

如何(快速)修复 beautifulsoup

您可以使用 table 中的 headers 创建一个 dict,然后遍历每个 td 以附加存储在 [=16 中的值列表=]:

data = {}

header = [x.text.strip() for x in table_html.select('tr th')]

for i,td in enumerate(table_html.select('tr:has(td) td')):
    data[header[i]] = [x.text.strip() for x in td.select('p')]

pd.DataFrame.from_dict(data)

例子

import requests
import pandas as pd
from bs4 import BeautifulSoup  # alternatively

url = "http://ufcstats.com/fight-details/bb15c0a2911043bd"

# to get the html via bs4
headers = {
    "Access-Control-Allow-Origin": "*",
    "Access-Control-Allow-Methods": "GET",
    "Access-Control-Allow-Headers": "Content-Type",
    "Access-Control-Max-Age": "3600",
    "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
}
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, "html.parser")
table_html = soup.find_all("table", {"class": "b-fight-details__table"})[-1]

data = {}

header = [x.text.strip() for x in table_html.select('tr th')]

for i,td in enumerate(table_html.select('tr:has(td) td')):
    data[header[i]] = [x.text.strip() for x in td.select('p')]

pd.DataFrame.from_dict(data)

输出

Fighter Sig. str Sig. str. % Head Body Leg Distance Clinch Ground
Joanne Wood 27 of 68 39% 8 of 36 3 of 7 16 of 25 26 of 67 1 of 1 0 of 0
Taila Santos 30 of 60 50% 21 of 46 3 of 7 6 of 7 19 of 42 0 of 0 11 of 18

与使用枚举确定行数的想法类似,但使用 :-soup-contains 定位 table,然后使用 nth-child 选择器在列表理解期间提取相关行。 pandas 将列表的结果列表转换为 DataFrame。假设以与当前 2 相同的模式添加行。

from bs4 import BeautifulSoup as bs
import requests
import pandas as pd

r = requests.get('http://ufcstats.com/fight-details/bb15c0a2911043bd')
soup = bs(r.content, 'lxml')
table = soup.select_one(
    '.js-fight-section:has(p:-soup-contains("Significant Strikes")) + table')

df = pd.DataFrame(
    [[i.text.strip() for i in table.select(f'tr:nth-child(1) td p:nth-child({n+1})')]
     for n, _ in enumerate(table.select('tr:nth-child(1) > td:nth-child(1) > p'))], columns=[i.text.strip() for i in table.select('th')])

print(df)