在 DataFrame 列中减去
subtract inside DataFrame columns
因为可能我今晚没睡,但是,鉴于:
df1 = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'], index=['rank1','rank2','rank3','rank4']}
df2 = {'Age':[28,34,29,42],'bubu':[98,33,3,30], index=['rank1','rank2','rank3','rank4']}
df_merged = = pd.concat([ df1, df2 ], axis = 1)
现在,为了动态管理来自更密集列的 df 中列的进一步算术运算:
a = ['Age'] #List
b = ['bubu'] #List
算术运算:
df_merged['newCol'] = df_merged[a]-df_merged[b]
或两者
df_merged.assign(newCol = df_merged[a] - df_merged[b])
我无法减去 2 列,因为 return 这样的错误
ValueError: Expected a 1D array, got an array with shape (556, 2)
不确定我是否理解,但试试这个:
a = 'Age'
b = 'bubu'
然后
df_merged['newCol'] = df_merged[a] - df_merged[b]
产生:
Name Age bubu newCol
rank1 Tom 28 98 -70
rank2 Jack 34 33 1
rank3 Steve 29 3 26
rank4 Ricky 42 30 12
这是你想要的吗?
df_merged['newCol'] = df_merged['Age']-df_merged['bubu'] or
df_merged.insert(3,'newCol', df_merged['Age']-df_merged['bubu'],True)
因为可能我今晚没睡,但是,鉴于:
df1 = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'], index=['rank1','rank2','rank3','rank4']}
df2 = {'Age':[28,34,29,42],'bubu':[98,33,3,30], index=['rank1','rank2','rank3','rank4']}
df_merged = = pd.concat([ df1, df2 ], axis = 1)
现在,为了动态管理来自更密集列的 df 中列的进一步算术运算:
a = ['Age'] #List
b = ['bubu'] #List
算术运算:
df_merged['newCol'] = df_merged[a]-df_merged[b]
或两者
df_merged.assign(newCol = df_merged[a] - df_merged[b])
我无法减去 2 列,因为 return 这样的错误
ValueError: Expected a 1D array, got an array with shape (556, 2)
不确定我是否理解,但试试这个:
a = 'Age'
b = 'bubu'
然后
df_merged['newCol'] = df_merged[a] - df_merged[b]
产生:
Name Age bubu newCol
rank1 Tom 28 98 -70
rank2 Jack 34 33 1
rank3 Steve 29 3 26
rank4 Ricky 42 30 12
这是你想要的吗?
df_merged['newCol'] = df_merged['Age']-df_merged['bubu'] or
df_merged.insert(3,'newCol', df_merged['Age']-df_merged['bubu'],True)