删除重复行后在数据框中维护索引
Maintaining indexing in dataframe after dropping the duplicate rows
我从数据框中删除了重复项,因此索引已更改,如果我想访问 df['Color'][1],它会显示错误,我该如何维护它??
import pandas as pd
boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle']
}
df = pd.DataFrame(boxes, columns = ['Color', 'Shape'])
df = df.drop_duplicates()
print(df)
输出
Color Shape
0 Green Rectangle
2 Green Square
3 Blue Rectangle
4 Blue Square
5 Red Square
7 Red Rectangle
我多么想要
Color Shape
0 Green Rectangle
1 Green Square
2 Blue Rectangle
3 Blue Square
4 Red Square
5 Red Rectangle
使用ignore_index=True
作为drop_duplicates
的参数:
>>> df.drop_duplicates(ignore_index=True)
Color Shape
0 Green Rectangle
1 Green Square
2 Blue Rectangle
3 Blue Square
4 Red Square
5 Red Rectangle
我从数据框中删除了重复项,因此索引已更改,如果我想访问 df['Color'][1],它会显示错误,我该如何维护它??
import pandas as pd
boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle']
}
df = pd.DataFrame(boxes, columns = ['Color', 'Shape'])
df = df.drop_duplicates()
print(df)
输出
Color Shape
0 Green Rectangle
2 Green Square
3 Blue Rectangle
4 Blue Square
5 Red Square
7 Red Rectangle
我多么想要
Color Shape
0 Green Rectangle
1 Green Square
2 Blue Rectangle
3 Blue Square
4 Red Square
5 Red Rectangle
使用ignore_index=True
作为drop_duplicates
的参数:
>>> df.drop_duplicates(ignore_index=True)
Color Shape
0 Green Rectangle
1 Green Square
2 Blue Rectangle
3 Blue Square
4 Red Square
5 Red Rectangle