如何迭代每个组的列值并跟踪总和

How to iterate over column values for each group and track sum

我有 4 个数据框,如下所示

df_raw = pd.DataFrame(
    {'stud_id' : [101, 101,101],
     'prod_id':[12,13,16],
     'total_qty':[100,1000,80],
     'ques_date' : ['13/11/2020', '10/1/2018','11/11/2017']})

df_accu = pd.DataFrame(
    {'stud_id' : [101,101,101],
     'prod_id':[12,13,16],
     'accu_qty':[10,500,10],
     'accu_date' : ['13/08/2021','02/11/2019','17/12/2018']})

df_inv = pd.DataFrame(
    {'stud_id' : [101,101,101],
     'prod_id':[12,13,18],
     'inv_qty':[5,100,15],
     'inv_date' : ['16/02/2022', '22/11/2020','19/10/2019']})

df_bkl = pd.DataFrame(
    {'stud_id' : [101,101,101,101],
     'prod_id' :[12,12,12,17],
     'bkl_qty' :[15,40,2,10],
     'bkl_date':['16/01/2022', '22/10/2021','09/10/2020','25/06/2020']})

我的objective是找出下面的

a) 获取阈值超过 50% 的日期

阈值由以下公式给出

threshold = (((df_inv['inv_qty']+df_bkl['bkl_qty']+df_accu['accu_qty'])/df_raw['total_qty'])*100)

我们必须按相同的顺序添加。意思是,首先,我们必须添加 inv_qty,然后添加 bkl_qty,最后添加 accu_qty。我们这样做是为了在它们超过总数量的 50% 时识别正确的日期。此外,必须为每个 stud_idprod_id.

计算

但问题是 df_bkl 对同一个 stud_idprod_id 有多个记录,这是设计使然。真实数据也是这样的。而 df_accudf_inv 每个 stud_idprod_id.

将只有一行

在上面的公式中df['bkl_qty'],we have to use each value of df['bkl_qty']计算和

例如:让我们取 stud_id = 101prod_id = 12

他的total_qty = 100inv_qty = 5,他的accu_qty=10。但他有三个 bkl_qty 值 - 15,40 和 2。因此,必须以如下方式计算阈值

5(inv_qty的值)+15(bkl_qty的第一个值)+40(bkl_qty的第二个值)+2(bkl_qty的第三个值=73=]) +10(是 accu_qty 的值)

所以,现在有了上面的,我们可以知道他的阈值在他的bkl_qty值为40时超过了50%。意思是,5+15+40 = 60(大于50%的total_qty (100)).

我正在尝试类似下面的操作

df_stage_1 = df_raw.merge(df_inv,on=['stud_id','prod_id'], how='left').fillna(0)
df_stage_2 = df_stage_1.merge(df_bkl,on=['stud_id','prod_id'])
df_stage_3 = df_stage_2.merge(df_accu,on=['stud_id','prod_id'])
df_stage_3['threshold'] = ((df_stage_3['inv_qty'] + df_stage_3['bkl_qty'] + df_stage_3['accu_qty'])/df_stage_3['total_qty'])*100

但这是不正确的,因为我无法通过 df_bkl

bkl_qty 的值来计算每个值

在这个 post 中,我只显示了一个 stud_id=101 的样本数据,但实际上我有超过 1000 个 stud_idprod_id

因此,任何优雅高效的方法都是有用的。我们必须将此逻辑应用于百万记录数据集。

我希望我的输出如下所示。每当总和值超过 total_qty 的 50% 时,我们需要获取相应的日期

stud_id,prod_id,total_qty,threshold,threshold_date
  101     12       100       72      22/10/2021

可以用groupbycumsum做累加求和

# add cumulative sum column to df_bkl
df_bkl['csum'] = df_bkl.groupby(['stud_id','prod_id'])['bkl_qty'].cumsum()

# use df_bkl['csum'] to compute threshold instead of bkl_qty
df_stage_3['threshold'] = ((df_stage_3['inv_qty'] + df_stage_3['csum'] + df_stage_3['accu_qty'])/df_stage_3['total_qty'])*100
# check if inv_qty already exceeds threshold
df_stage_3.loc[df_stage_3.inv_qty > df_stage_3.total_qty/2, 'bkl_date'] = df_stage_3['inv_date']

# next doing some filter and merge to arrive at the desired df
gt_thres = df_stage_3[df_stage_3['threshold'] > df_stage_3['total_qty']/2]
df_f1 = gt_thres.groupby(['stud_id','prod_id','total_qty'])['threshold'].min().to_frame(name='threshold').reset_index()
df_f2 = gt_thres.groupby(['stud_id','prod_id','total_qty'])['threshold'].max().to_frame(name='threshold_max').reset_index()

df = pd.merge(df_f1, df_stage_3, on=['stud_id','prod_id','total_qty','threshold'], how='inner')
df2 = pd.merge(df,df_f2, on=['stud_id','prod_id','total_qty'], how='inner')
df2 = df2[['stud_id','prod_id','total_qty','threshold','bkl_date']].rename(columns={'threshold_max':'threshold', 'bkl_date':'threshold_date'})
print(df2)

提供输出为:

   stud_id  prod_id  total_qty  threshold threshold_date
0      101       12        100       72.0     22/10/2021

这个有用吗?