根据值何时更改而不使用 if 语句重写数据框中的列单元格值

rewritng a column cell values in a dataframe based on when the value change without using if statment

我有一个包含错误值的列,因为它应该计算周期,但是数据来自的设备在 50 之后重置计数,所以我只剩下 exmalple [1,1,1,1,2,2 ,2,3,3,3,3,...,50,50,50,1,1,1,2,2,2,2,3,3,3,...,50,50, .....,50] 我的解决方案是,我什至无法让它工作:(为简单起见,我从 10 个周期开始重置数据

 data = {'Cyc-Count':[1,1,2,2,2,3,4,5,6,7,7,7,8,9,10,1,1,1,2,3,3,3,3,
               4,4,5,6,6,6,7,8,8,8,8,9,10]}
df = pd.DataFrame(data)
x=0
count=0
old_value=df.at[x,'Cyc-Count']
for x in range(x,len(df)-1):
    if df.at[x,'Cyc-Count']==df.at[x+1,'Cyc-Count']:
        old_value=df.at[x+1,'Cyc-Count']
        df.at[x+1,'Cyc-Count']=count
       
    else:
        old_value=df.at[x+1,'Cyc-Count']
        count+=1
        df.at[x+1,'Cyc-Count']=count
    

我需要解决这个问题,但最好不要使用 if 语句 上例所需的输出应该是

data = {'Cyc-Count':[1,1,2,2,2,3,4,5,6,7,7,7,8,9,10,11,11,11,12,13,13,13,13,
               14,14,15,16,16,16,17,18,18,18,18,19,20]}

提示“我的方法有一个大问题是最后一个索引值将很难更改,因为在将它与它的索引+1 进行比较时 > 它甚至不存在

IIUC,你想在计数器减少的时候继续计数

您可以使用矢量代码:

s = df['Cyc-Count'].shift()
df['Cyc-Count2'] = (df['Cyc-Count']
                   + s.where(s.gt(df['Cyc-Count']))
                      .fillna(0, downcast='infer')
                      .cumsum()
                   )

或者,就地修改列:

s = df['Cyc-Count'].shift()
df['Cyc-Count'] +=  (s.where(s.gt(df['Cyc-Count']))
                      .fillna(0, downcast='infer').cumsum()
                     )

输出:

    Cyc-Count  Cyc-Count2
0           1           1
1           1           1
2           1           1
3           1           1
4           2           2
5           2           2
6           2           2
7           3           3
8           3           3
9           3           3
10          3           3
11          4           4
12          5           5
13          5           5
14          5           5
15          1           6
16          1           6
17          1           6
18          2           7
19          2           7
20          2           7
21          2           7
22          3           8
23          3           8
24          3           8
25          4           9
26          5          10
27          5          10
28          1          11
29          2          12
30          2          12
31          3          13
32          4          14
33          5          15
34          5          15

使用的输入:

l = [1,1,1,1,2,2,2,3,3,3,3,4,5,5,5,1,1,1,2,2,2,2,3,3,3,4,5,5,1,2,2,3,4,5,5]
df = pd.DataFrame({'Cyc-Count': l})

您可以使用 df.loc 通过标签或布尔数组访问一组行和列。

语法:df.loc[df['column name'] 条件,'column name or the new one'] = 'value if condition is met'

例如:

import pandas as pd

numbers = {'set_of_numbers': [1,2,3,4,5,6,7,8,9,10,0,0]}
df = pd.DataFrame(numbers,columns=['set_of_numbers'])
print (df)

df.loc[df['set_of_numbers'] == 0, 'set_of_numbers'] = 999
df.loc[df['set_of_numbers'] == 5, 'set_of_numbers'] = 555

print (df)

之前:‘set_of_numbers’:[1,2,3,4,5,6,7,8,9,10,0,0]

之后:‘set_of_numbers’:[1,2,3,4,555,6,7,8,9,10,999,999]