R:树上的聚合值

R: aggregate values on a tree

这个问题和this类似,但是它有一个C#答案,我需要一个R答案。

我有大约 650 行的大约 50 个文件,其格式和数据与这个玩具数据非常相似:

dput(y)
structure(list(level1 = c(4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L), level2 = c(NA, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 
42L, 42L, 42L, 42L), level3 = c(NA, NA, 4120L, 4120L, 4120L, 
4120L, 4120L, 4120L, NA, 4210L, 4210L, 4210L), level4 = c(NA, 
NA, NA, 412030L, 412030L, 412050L, 412050L, 412050L, NA, NA, 
421005L, 421005L), pid = c(NA, NA, NA, NA, 123456L, NA, 789012L, 
345678L, NA, NA, NA, 901234L), description = c("income", "op.income", 
"manuf.industries", "manuf 1", "client 1", "manuf 2", "client 2", 
"client 3", "non-op.income", "financial", "interest", "bank 1"
), value = c(NA, NA, NA, NA, 15000L, NA, 272860L, 1150000L, NA, 
NA, NA, 378L)), .Names = c("level1", "level2", "level3", "level4", 
"pid", "description", "value"), class = c("data.table", "data.frame"
), row.names = c(NA, -12L), .internal.selfref = <pointer: 0x00000000001a0788>)

value 上具有值的每一行都是一棵 "leaf" 树,在 level1 到 4 列中标识了分支。我想通过以下方式总结叶子brach 并将相应的值放在 value 列中。

我的预期输出如下所示:

dput(res)
structure(list(level1 = c(4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L), level2 = c(NA, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 
42L, 42L, 42L, 42L), level3 = c(NA, NA, 4120L, 4120L, 4120L, 
4120L, 4120L, 4120L, NA, 4210L, 4210L, 4210L), level4 = c(NA, 
NA, NA, 412030L, 412030L, 412050L, 412050L, 412050L, NA, NA, 
421005L, 421005L), pid = c(NA, NA, NA, NA, 123456L, NA, 789012L, 
345678L, NA, NA, NA, 901234L), description = c("income", "op.income", 
"manuf.industries", "manuf 1", "client 1", "manuf 2", "client 2", 
"client 3", "non-op.income", "financial", "interest", "bank 1"
), value = c(1438238L, 1437860L, 1437860L, 15000L, 15000L, 1422860L, 
272860L, 1150000L, 378L, 378L, 378L, 378L)), .Names = c("level1", 
"level2", "level3", "level4", "pid", "description", "value"), class = c("data.table", 
"data.frame"), row.names = c(NA, -12L), .internal.selfref = <pointer: 0x00000000001a0788>)

我知道这可以用 for 循环来完成,但我想知道是否有更快、更简单的替代方案(我更喜欢 data.table 或基本解决方案,但任何其他包也可以正常工作).到目前为止我尝试了什么:

z4<-y[!is.na(pid),sum(value),by=level4]
setkey(y,"level4");setkey(z4,"level4")
y[z4,][is.na(pid)]

这向我显示了 V1 中的所需值,所以我想看看是否可以将它们分配给 value:

y[z4,][is.na(pid),value:=i.V1]
Error in eval(expr, envir, enclos) : object 'i.V1' not found

我认为这可能是因为调用 i.V1 在链式 [ 中而不是在初始 y[z4 调用中。但是如果我只在 z4 上进行子集化,我怎么知道我应该分配几个匹配的 level4 行中的哪一个(这就是为什么我考虑使用 is.na(pid),因为 y[z4,value:=i.V1] 会产生错误的结果,因为它会更新所有匹配 level4).

的值

如您所见,我在这个问题上深陷其中,"my method" 我还有 3 个级别要走。

有更简单的方法吗?

因为每一层的计算都需要上一层的计算,所以我觉得需要循环或者递归。这是一个使用基数 R 获取值的递归函数。你当然可以用 data.table 做类似的事情,这可能会更有效率。

## Use y as data.frame
y <- as.data.frame(y)

## Recursive function to get values
f <- function(data, lvl=NULL) {
    if (is.null(lvl)) lvl <- 1                                                 # initialize level
    if (lvl == 5) return (data)                                                # we are done
    cname <- paste0("level", lvl)                                              # name of current level
    nname <- ifelse (lvl == 4, "pid", paste0("level", lvl+1))                  # name of next level
    agg <- aggregate(as.formula(paste("value~", cname)), data=data, sum)       # aggregate data
    inds <- (ms <- match(data[,cname], agg[,cname], F)) & is.na(data[,nname])  # find index of leaves to fill
    data$value[inds] <- agg$value[ms[inds]]                                    # add new values
    f(data, lvl+1)                                                             # recurse
}

f(data=y)
#    level1 level2 level3 level4    pid      description   value
# 1       4     NA     NA     NA     NA           income 1438238
# 2       4     41     NA     NA     NA        op.income 1437860
# 3       4     41   4120     NA     NA manuf.industries 1437860
# 4       4     41   4120 412030     NA          manuf 1   15000
# 5       4     41   4120 412030 123456         client 1   15000
# 6       4     41   4120 412050     NA          manuf 2 1422860
# 7       4     41   4120 412050 789012         client 2  272860
# 8       4     41   4120 412050 345678         client 3 1150000
# 9       4     42     NA     NA     NA    non-op.income     378
# 10      4     42   4210     NA     NA        financial     378
# 11      4     42   4210 421005     NA         interest     378
# 12      4     42   4210 421005 901234           bank 1     378

我认为聚合步骤可以通过仅聚合数据的子集(如果需要)来提高效率。老实说,这很有趣,但可能需要循环。