从参数的顺序解释这种奇怪的效果(并提供解决方法,如果可能的话)
Explain this strange effect from the order of arguments (and provide a workaround, if possible)
在尝试为我提出的问题提出解决方案时 here,我发现 refl 证明的可接受性(通过 Agda)以一种奇怪的方式取决于函数参数的顺序在等式的一侧调用。
在下面的代码中,看看除了底部 4 个定理中的一个以外,其他所有定理都是如何用 refl 证明的。重要的是要注意 join
和 join'
仅在参数顺序上有所不同。相应地,我认为调用它们的 thm
s 应该被等价地证明,但显然事实并非如此。
为什么会出现差异?这是否代表 Agda 中的错误?我将如何证明剩余的定理 (thm1
)?
open import Data.Nat
open import Data.Product
-- Stolen (with little modification) from Data.AVL
data ℕ₂ : Set where
0# : ℕ₂
1# : ℕ₂
infixl 6 _⊕_
_⊕_ : ℕ₂ → ℕ → ℕ
0# ⊕ n = n
1# ⊕ n = suc n
infix 4 _∼_⊔_
data _∼_⊔_ : ℕ → ℕ → ℕ → Set where
∼+ : ∀ {n} → n ∼ suc n ⊔ suc n
∼0 : ∀ {n} → n ∼ n ⊔ n
∼- : ∀ {n} → suc n ∼ n ⊔ suc n
max∼ : ∀ {i j m} → i ∼ j ⊔ m → m ∼ i ⊔ m
max∼ ∼+ = ∼-
max∼ ∼0 = ∼0
max∼ ∼- = ∼0
∼max : ∀ {i j m} → i ∼ j ⊔ m → j ∼ m ⊔ m
∼max ∼+ = ∼0
∼max ∼0 = ∼0
∼max ∼- = ∼+
-- for simplicity, this tree has no keys
data Tree : ℕ → Set where
leaf : Tree 0
node : ∀ {l u h}
(L : Tree l)
(U : Tree u)
(bal : l ∼ u ⊔ h) →
Tree (suc h)
-- similar to joinˡ⁺ from Data.AVL
join : ∀ {hˡ hʳ h : ℕ} →
(∃ λ i → Tree (i ⊕ hˡ)) →
Tree hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree (i ⊕ (suc h))
join (1# , node t₁
(node t₃ t₅ bal)
∼+) t₇ ∼- = (0# , node
(node t₁ t₃ (max∼ bal))
(node t₅ t₇ (∼max bal))
∼0)
join (1# , node t₁ t₃ ∼-) t₅ ∼- = (0# , node t₁ (node t₃ t₅ ∼0) ∼0)
join (1# , node t₁ t₃ ∼0) t₅ ∼- = (1# , node t₁ (node t₃ t₅ ∼-) ∼+)
join (1# , t₁) t₃ ∼0 = (1# , node t₁ t₃ ∼-)
join (1# , t₁) t₃ ∼+ = (0# , node t₁ t₃ ∼0)
join (0# , t₁) t₃ bal = (0# , node t₁ t₃ bal)
-- just like join but with "bal" earlier in the argument list
join' : ∀ {hˡ hʳ h : ℕ} →
(bal : hˡ ∼ hʳ ⊔ h) →
(∃ λ i → Tree (i ⊕ hˡ)) →
Tree hʳ →
∃ λ i → Tree (i ⊕ (suc h))
join' ∼- (1# , node t₁
(node t₃ t₅ bal)
∼+) t₇ = (0# , node
(node t₁ t₃ (max∼ bal))
(node t₅ t₇ (∼max bal))
∼0)
join' ∼- (1# , node t₁ t₃ ∼-) t₅ = (0# , node t₁ (node t₃ t₅ ∼0) ∼0)
join' ∼- (1# , node t₁ t₃ ∼0) t₅ = (1# , node t₁ (node t₃ t₅ ∼-) ∼+)
join' ∼0 (1# , t₁) t₃ = (1# , node t₁ t₃ ∼-)
join' ∼+ (1# , t₁) t₃ = (0# , node t₁ t₃ ∼0)
join' bal (0# , t₁) t₃ = (0# , node t₁ t₃ bal)
open import Relation.Binary.PropositionalEquality
thm0 : ∀ {h : ℕ} (tl : Tree h ) (tr : Tree (suc h)) → join (0# , tl) tr ∼+ ≡ (0# , node tl tr ∼+)
thm0 tl tr = refl
thm1 : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
thm1 tl tr = {!!} -- FIXME refl doesn't work here!
thm0' : ∀ {h : ℕ} (tl : Tree h ) (tr : Tree (suc h)) → join' ∼+ (0# , tl) tr ≡ (0# , node tl tr ∼+)
thm0' tl tr = refl
thm1' : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join' ∼+ (1# , tl) tr ≡ (0# , node tl tr ∼0)
thm1' tl tr = refl -- refl works fine here, and all I did was switch the order of arguments to join(')
如果我尝试用 refl 证明 thm1
,我会得到以下错误:
proj₁ (join (1# , tl) tr ∼+) != 0# of type ℕ₂
when checking that the expression refl has type
join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
注意:这是使用 Agda 2.4.2.3 和相同版本的标准库(来自 github here.
你可以写
thm1 : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
thm1 (node tl (node tl₁ tl₂ bal) ∼+) tr = refl
thm1 (node tl leaf ∼0) tr = refl
thm1 (node tl (node tl₁ tl₂ bal) ∼0) tr = refl
thm1 (node tl leaf ∼-) tr = refl
thm1 (node tl (node tl₁ tl₂ bal) ∼-) tr = refl
In thm1
Agda 强制第一个参数 (tl
) 在 WHNF 中,即使可以通过查看 join
的第三个参数然后在第一个.
在尝试为我提出的问题提出解决方案时 here,我发现 refl 证明的可接受性(通过 Agda)以一种奇怪的方式取决于函数参数的顺序在等式的一侧调用。
在下面的代码中,看看除了底部 4 个定理中的一个以外,其他所有定理都是如何用 refl 证明的。重要的是要注意 join
和 join'
仅在参数顺序上有所不同。相应地,我认为调用它们的 thm
s 应该被等价地证明,但显然事实并非如此。
为什么会出现差异?这是否代表 Agda 中的错误?我将如何证明剩余的定理 (thm1
)?
open import Data.Nat
open import Data.Product
-- Stolen (with little modification) from Data.AVL
data ℕ₂ : Set where
0# : ℕ₂
1# : ℕ₂
infixl 6 _⊕_
_⊕_ : ℕ₂ → ℕ → ℕ
0# ⊕ n = n
1# ⊕ n = suc n
infix 4 _∼_⊔_
data _∼_⊔_ : ℕ → ℕ → ℕ → Set where
∼+ : ∀ {n} → n ∼ suc n ⊔ suc n
∼0 : ∀ {n} → n ∼ n ⊔ n
∼- : ∀ {n} → suc n ∼ n ⊔ suc n
max∼ : ∀ {i j m} → i ∼ j ⊔ m → m ∼ i ⊔ m
max∼ ∼+ = ∼-
max∼ ∼0 = ∼0
max∼ ∼- = ∼0
∼max : ∀ {i j m} → i ∼ j ⊔ m → j ∼ m ⊔ m
∼max ∼+ = ∼0
∼max ∼0 = ∼0
∼max ∼- = ∼+
-- for simplicity, this tree has no keys
data Tree : ℕ → Set where
leaf : Tree 0
node : ∀ {l u h}
(L : Tree l)
(U : Tree u)
(bal : l ∼ u ⊔ h) →
Tree (suc h)
-- similar to joinˡ⁺ from Data.AVL
join : ∀ {hˡ hʳ h : ℕ} →
(∃ λ i → Tree (i ⊕ hˡ)) →
Tree hʳ →
(bal : hˡ ∼ hʳ ⊔ h) →
∃ λ i → Tree (i ⊕ (suc h))
join (1# , node t₁
(node t₃ t₅ bal)
∼+) t₇ ∼- = (0# , node
(node t₁ t₃ (max∼ bal))
(node t₅ t₇ (∼max bal))
∼0)
join (1# , node t₁ t₃ ∼-) t₅ ∼- = (0# , node t₁ (node t₃ t₅ ∼0) ∼0)
join (1# , node t₁ t₃ ∼0) t₅ ∼- = (1# , node t₁ (node t₃ t₅ ∼-) ∼+)
join (1# , t₁) t₃ ∼0 = (1# , node t₁ t₃ ∼-)
join (1# , t₁) t₃ ∼+ = (0# , node t₁ t₃ ∼0)
join (0# , t₁) t₃ bal = (0# , node t₁ t₃ bal)
-- just like join but with "bal" earlier in the argument list
join' : ∀ {hˡ hʳ h : ℕ} →
(bal : hˡ ∼ hʳ ⊔ h) →
(∃ λ i → Tree (i ⊕ hˡ)) →
Tree hʳ →
∃ λ i → Tree (i ⊕ (suc h))
join' ∼- (1# , node t₁
(node t₃ t₅ bal)
∼+) t₇ = (0# , node
(node t₁ t₃ (max∼ bal))
(node t₅ t₇ (∼max bal))
∼0)
join' ∼- (1# , node t₁ t₃ ∼-) t₅ = (0# , node t₁ (node t₃ t₅ ∼0) ∼0)
join' ∼- (1# , node t₁ t₃ ∼0) t₅ = (1# , node t₁ (node t₃ t₅ ∼-) ∼+)
join' ∼0 (1# , t₁) t₃ = (1# , node t₁ t₃ ∼-)
join' ∼+ (1# , t₁) t₃ = (0# , node t₁ t₃ ∼0)
join' bal (0# , t₁) t₃ = (0# , node t₁ t₃ bal)
open import Relation.Binary.PropositionalEquality
thm0 : ∀ {h : ℕ} (tl : Tree h ) (tr : Tree (suc h)) → join (0# , tl) tr ∼+ ≡ (0# , node tl tr ∼+)
thm0 tl tr = refl
thm1 : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
thm1 tl tr = {!!} -- FIXME refl doesn't work here!
thm0' : ∀ {h : ℕ} (tl : Tree h ) (tr : Tree (suc h)) → join' ∼+ (0# , tl) tr ≡ (0# , node tl tr ∼+)
thm0' tl tr = refl
thm1' : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join' ∼+ (1# , tl) tr ≡ (0# , node tl tr ∼0)
thm1' tl tr = refl -- refl works fine here, and all I did was switch the order of arguments to join(')
如果我尝试用 refl 证明 thm1
,我会得到以下错误:
proj₁ (join (1# , tl) tr ∼+) != 0# of type ℕ₂
when checking that the expression refl has type
join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
注意:这是使用 Agda 2.4.2.3 和相同版本的标准库(来自 github here.
你可以写
thm1 : ∀ {h : ℕ} (tl : Tree (suc h)) (tr : Tree (suc h)) → join (1# , tl) tr ∼+ ≡ (0# , node tl tr ∼0)
thm1 (node tl (node tl₁ tl₂ bal) ∼+) tr = refl
thm1 (node tl leaf ∼0) tr = refl
thm1 (node tl (node tl₁ tl₂ bal) ∼0) tr = refl
thm1 (node tl leaf ∼-) tr = refl
thm1 (node tl (node tl₁ tl₂ bal) ∼-) tr = refl
In thm1
Agda 强制第一个参数 (tl
) 在 WHNF 中,即使可以通过查看 join
的第三个参数然后在第一个.