当多个 rows/columns 组合不满足要求时更改值

Changing value when multiple rows/columns combined do not meet a requirement

R 相对较新,正在处理一个有数百万行的项目,所以我做了这个例子:
我有一个包含三个不同数据行的矩阵。
如果 [1][2][Farm] 的组合总共少于两个观察值,则该行的 [Farm] 值将更改为 q99999。这样他们就属于同一个组,以便以后分析。

    A <- matrix(c(1,1,2,3,4,5,5), ncol = 7)
    B <- matrix(c(T,T,F,T,F,T,T), ncol = 7)
    C <- matrix(c("Req","Req","Req","fd","as","f","bla"), ncol = 7)
    AB <- rbind.fill.matrix(A,B, C)
    AB <-t(AB)
    colnames(AB) <- c("Col1", "Col2", "Farm")
    format(AB)

     Col1  Col2  Farm
    1 "1  " "1  " "Req"
    2 "1  " "1  " "Req"
    3 "2  " "0  " "Req"
    4 "3  " "1  " "fd "
    5 "4  " "0  " "as "
    6 "5  " "1  " "f  "
    7 "5  " "1  " "bla"

所以预期的结果如下:

     Col1  Col2  Farm
    1 "1  " "1  " "Req"
    2 "1  " "1  " "Req"
    3 "2  " "0  " "q99999"
    4 "3  " "1  " "q99999"
    5 "4  " "0  " "q99999"
    6 "5  " "1  " "q99999"
    7 "5  " "1  " "q99999"

现在 "Farm"、"Req" 和 "q99999" 列有两组

在保持性能尽可能快的情况下,在 R 中完成这项工作的最佳方法是什么?

使用 data.table 包的可能解决方案:

library(data.table)

as.data.table(AB)[,Farm:=ifelse(.N>1, Farm, "q99999"),.(Col1, Col2, Farm)][]

#   Col1 Col2   Farm
#1:    1    1    Req
#2:    1    1    Req
#3:    2    0 q99999
#4:    3    1 q99999
#5:    4    0 q99999
#6:    5    1 q99999
#7:    5    1 q99999

或基于 Rave:

AB[,'Farm'] = ave(AB[,'Farm'], do.call(c,apply(AB,2,list)), FUN=function(x) ifelse(length(x)==1, 'q99999',x))

#  Col1 Col2 Farm    
#1 "1"  "1"  "Req"   
#2 "1"  "1"  "Req"   
#3 "2"  "0"  "q99999"
#4 "3"  "1"  "q99999"
#5 "4"  "0"  "q99999"
#6 "5"  "1"  "q99999"
#7 "5"  "1"  "q99999"