TensorFlow 的 ./configure 在哪里以及如何启用 GPU 支持?

where is the ./configure of TensorFlow and how to enable the GPU support?

在我的 Ubuntu 上安装 TensorFlow 时,我想将 GPU 与 CUDA 结合使用。

但是我在Official Tutorial的这一步停了下来:

这个 ./configure 到底在哪里?或者我的源代码树的根在哪里。

我的 TensorFlow 位于此处 /usr/local/lib/python2.7/dist-packages/tensorflow。但是我还是没有找到./configure

编辑

我根据找到了./configure。但是在执行示例代码时,出现以下错误:

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
E tensorflow/stream_executor/cuda/cuda_driver.cc:466] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:86] kernel driver does not appear to be running on this host (cliu-ubuntu): /proc/driver/nvidia/version does not exist
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8

找不到cuda设备。

回答

查看有关如何启用 GPU 支持的答案

这是一个 bash 脚本,应该在

the root of your source tree

当你cloned the repo. Here it is https://github.com/tensorflow/tensorflow/blob/master/configure

关于你的第二个问题:你是否安装了兼容的 GPU(NVIDIA 计算能力 3.5 或更高),并且你是否按照说明安装了 CUDA 7.0 + cuDNN?这是您看到失败的最可能原因。如果答案是肯定的,则可能是 cuda 安装问题。当你 运行 nvidia-smi 时,你看到你的 GPU 被列出了吗?如果没有,您需要先修复它。这可能需要获取更新的驱动程序 and/or 重新 运行ning nvidia-xconfig 等

只有拥有 7.0 cuda 库和 6.5 cudnn 库才能从源重建 GPU 版本。 这需要 google 更新,我认为

  • 第一个问题的答案:./configure已经根据答案. It is under the source folder of tensorflow as shown here找到了。

  • 第二个问题的答案:

实际上,我有 GPU NVIDIA Corporation GK208GLM [Quadro K610M]。我还安装了 CUDA + cuDNN。 (因此,以下答案是基于您已经正确安装 CUDA 7.0+ + cuDNN 和正确的版本。)但是问题是:我安装了驱动程序但 GPU 不工作。我按照以下步骤使其工作:

起初,我这样做 lspci 并得到:

01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev ff)

这里的状态是rev ff。然后,我做了sudo update-pciids,再次检查lspci,得到:

01:00.0 VGA compatible controller: NVIDIA Corporation GK208GLM [Quadro K610M] (rev a1)

现在,Nvidia GPU 的状态是正确的 rev a1。但是现在 tensorflow 还不支持 GPU。接下来的步骤是(我安装的Nvidia驱动是版本nvidia-352):

sudo modprobe nvidia_352
sudo modprobe nvidia_352_uvm

为了将驱动程序添加到正确的模式。再次检查:

cliu@cliu-ubuntu:~$ lspci -vnn | grep -i VGA -A 12
01:00.0 VGA compatible controller [0300]: NVIDIA Corporation GK208GLM [Quadro K610M] [10de:12b9] (rev a1) (prog-if 00 [VGA controller])
    Subsystem: Hewlett-Packard Company Device [103c:1909]
    Flags: bus master, fast devsel, latency 0, IRQ 16
    Memory at cb000000 (32-bit, non-prefetchable) [size=16M]
    Memory at 50000000 (64-bit, prefetchable) [size=256M]
    Memory at 60000000 (64-bit, prefetchable) [size=32M]
    I/O ports at 5000 [size=128]
    Expansion ROM at cc000000 [disabled] [size=512K]
    Capabilities: <access denied>
    Kernel driver in use: nvidia
cliu@cliu-ubuntu:~$ lsmod | grep nvidia
nvidia_uvm             77824  0 
nvidia               8646656  1 nvidia_uvm
drm                   348160  7 i915,drm_kms_helper,nvidia

我们可以发现显示的是Kernel driver in use: nvidianvidia是正确的模式。

现在,使用示例 here 测试 GPU:

cliu@cliu-ubuntu:~$ python
Python 2.7.9 (default, Apr  2 2015, 15:33:21) 
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
>>> b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
>>> c = tf.matmul(a, b)
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 8
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:888] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:88] Found device 0 with properties: 
name: Quadro K610M
major: 3 minor: 5 memoryClockRate (GHz) 0.954
pciBusID 0000:01:00.0
Total memory: 1023.81MiB
Free memory: 1007.66MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:112] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:122] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:643] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0)
I tensorflow/core/common_runtime/gpu/gpu_region_allocator.cc:47] Setting region size to 846897152
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 8
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/local_session.cc:107] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K610M, pci bus id: 0000:01:00.0

>>> print sess.run(c)
b: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
I tensorflow/core/common_runtime/simple_placer.cc:289] MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

如您所见,已使用 GPU。