通过关键列合并一列的中位数 - SFrame / Pandas
Merging median from one column by a key column - SFrame / Pandas
在 graphlab
中,我有以下 SFrame
调用 train
:
import graphlab
train = graphlab.read_csv('clean_train.csv')
train.head()
[输出]:
+-------+------------+---------+-----------+
| Store | Date | Sales | Customers |
+-------+------------+---------+-----------+
| 1 | 2015-07-31 | 5263.0 | 555.0 |
| 2 | 2015-07-31 | 6064.0 | 625.0 |
| 3 | 2015-07-31 | 8314.0 | 821.0 |
| 4 | 2015-07-31 | 13995.0 | 1498.0 |
| 3 | 2015-07-20 | 4822.0 | 559.0 |
| 2 | 2015-07-10 | 5651.0 | 589.0 |
| 4 | 2015-07-11 | 15344.0 | 1414.0 |
| 5 | 2015-07-23 | 8492.0 | 833.0 |
| 2 | 2015-07-19 | 8565.0 | 687.0 |
| 10 | 2015-07-09 | 7185.0 | 681.0 |
+-------+------------+---------+-----------+
[986159 rows x 4 columns]
要获得每家商店的中位数销售额,我可以执行以下操作,使用 graphlab
为每家商店的中位数销售额附加一个新列:
mediansales_perstore = train.groupby('Store', operations={'mediansales': agg.QUANTILE('Sales', 0.5)})
train_stores = train_stores.join(mediansales_perstore, on='Store')
test_stores['mediansales'] = [i[0] for i in test_stores['mediansales']]
代码在 graphlab
中运行,添加了一个新行 mediansales
。但是当我尝试将 pandas
DataFrame
与代码一起使用时:
mediansales_perstore = train.groupby(['Store'])['Sales'].median()
这会根据 graphlab 代码提取每家商店的中位数销售额,但是当我尝试将其合并回火车矩阵时:
train.join(pd.DataFrame(train.groupby(['Store'])['Sales'].median()), on='Store')
失败并抛出错误:
ValueError Traceback (most recent call last)
<ipython-input-15-7b64cb46e386> in <module>()
----> 1 train.join(pd.DataFrame(train.groupby(['Store'])['Sales'].median()), on='Store')
/usr/local/lib/python2.7/dist-packages/pandas/core/frame.pyc in join(self, other, on, how, lsuffix, rsuffix, sort)
4017 # For SparseDataFrame's benefit
4018 return self._join_compat(other, on=on, how=how, lsuffix=lsuffix,
-> 4019 rsuffix=rsuffix, sort=sort)
4020
4021 def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='',
/usr/local/lib/python2.7/dist-packages/pandas/core/frame.pyc in _join_compat(self, other, on, how, lsuffix, rsuffix, sort)
4031 return merge(self, other, left_on=on, how=how,
4032 left_index=on is None, right_index=True,
-> 4033 suffixes=(lsuffix, rsuffix), sort=sort)
4034 else:
4035 if on is not None:
/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.pyc in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy)
36 right_index=right_index, sort=sort, suffixes=suffixes,
37 copy=copy)
---> 38 return op.get_result()
39 if __debug__:
40 merge.__doc__ = _merge_doc % '\nleft : DataFrame'
/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.pyc in get_result(self)
190
191 llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf,
--> 192 rdata.items, rsuf)
193
194 lindexers = {1: left_indexer} if left_indexer is not None else {}
/usr/local/lib/python2.7/dist-packages/pandas/core/internals.pyc in items_overlap_with_suffix(left, lsuffix, right, rsuffix)
3969 if not lsuffix and not rsuffix:
3970 raise ValueError('columns overlap but no suffix specified: %s' %
-> 3971 to_rename)
3972
3973 def lrenamer(x):
ValueError: columns overlap but no suffix specified: Index([u'Sales'], dtype='object')
如何使用"Store"作为键使用pandas
合并"Sales"列的中位数? graphlab
代码虽然有效。
您可以使用 transform
:
在一个阶段完成此操作
>>> train['Median-Sales'] = train.groupby('Store')['Sales'].transform('median')
>>> train
Store Date Sales Customers Median-Sales
0 1 2015-07-31 5263 555 5263.0
1 2 2015-07-31 6064 625 6064.0
2 3 2015-07-31 8314 821 6568.0
3 4 2015-07-31 13995 1498 14669.5
4 3 2015-07-20 4822 559 6568.0
5 2 2015-07-10 5651 589 6064.0
6 4 2015-07-11 15344 1414 14669.5
7 5 2015-07-23 8492 833 8492.0
8 2 2015-07-19 8565 687 6064.0
9 10 2015-07-09 7185 681 7185.0
合并错误只是说您在左右框架中有重复的列名,因此您需要提供后缀来区分列或重命名列:
>>> right = train.groupby('Store')['Sales'].median()
>>> right.name = 'Median-Sales'
>>> train.join(right, on='Store')
Store Date Sales Customers Median-Sales
0 1 2015-07-31 5263 555 5263.0
1 2 2015-07-31 6064 625 6064.0
2 3 2015-07-31 8314 821 6568.0
3 4 2015-07-31 13995 1498 14669.5
4 3 2015-07-20 4822 559 6568.0
5 2 2015-07-10 5651 589 6064.0
6 4 2015-07-11 15344 1414 14669.5
7 5 2015-07-23 8492 833 8492.0
8 2 2015-07-19 8565 687 6064.0
9 10 2015-07-09 7185 681 7185.0
在 graphlab
中,我有以下 SFrame
调用 train
:
import graphlab
train = graphlab.read_csv('clean_train.csv')
train.head()
[输出]:
+-------+------------+---------+-----------+
| Store | Date | Sales | Customers |
+-------+------------+---------+-----------+
| 1 | 2015-07-31 | 5263.0 | 555.0 |
| 2 | 2015-07-31 | 6064.0 | 625.0 |
| 3 | 2015-07-31 | 8314.0 | 821.0 |
| 4 | 2015-07-31 | 13995.0 | 1498.0 |
| 3 | 2015-07-20 | 4822.0 | 559.0 |
| 2 | 2015-07-10 | 5651.0 | 589.0 |
| 4 | 2015-07-11 | 15344.0 | 1414.0 |
| 5 | 2015-07-23 | 8492.0 | 833.0 |
| 2 | 2015-07-19 | 8565.0 | 687.0 |
| 10 | 2015-07-09 | 7185.0 | 681.0 |
+-------+------------+---------+-----------+
[986159 rows x 4 columns]
要获得每家商店的中位数销售额,我可以执行以下操作,使用 graphlab
为每家商店的中位数销售额附加一个新列:
mediansales_perstore = train.groupby('Store', operations={'mediansales': agg.QUANTILE('Sales', 0.5)})
train_stores = train_stores.join(mediansales_perstore, on='Store')
test_stores['mediansales'] = [i[0] for i in test_stores['mediansales']]
代码在 graphlab
中运行,添加了一个新行 mediansales
。但是当我尝试将 pandas
DataFrame
与代码一起使用时:
mediansales_perstore = train.groupby(['Store'])['Sales'].median()
这会根据 graphlab 代码提取每家商店的中位数销售额,但是当我尝试将其合并回火车矩阵时:
train.join(pd.DataFrame(train.groupby(['Store'])['Sales'].median()), on='Store')
失败并抛出错误:
ValueError Traceback (most recent call last)
<ipython-input-15-7b64cb46e386> in <module>()
----> 1 train.join(pd.DataFrame(train.groupby(['Store'])['Sales'].median()), on='Store')
/usr/local/lib/python2.7/dist-packages/pandas/core/frame.pyc in join(self, other, on, how, lsuffix, rsuffix, sort)
4017 # For SparseDataFrame's benefit
4018 return self._join_compat(other, on=on, how=how, lsuffix=lsuffix,
-> 4019 rsuffix=rsuffix, sort=sort)
4020
4021 def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='',
/usr/local/lib/python2.7/dist-packages/pandas/core/frame.pyc in _join_compat(self, other, on, how, lsuffix, rsuffix, sort)
4031 return merge(self, other, left_on=on, how=how,
4032 left_index=on is None, right_index=True,
-> 4033 suffixes=(lsuffix, rsuffix), sort=sort)
4034 else:
4035 if on is not None:
/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.pyc in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy)
36 right_index=right_index, sort=sort, suffixes=suffixes,
37 copy=copy)
---> 38 return op.get_result()
39 if __debug__:
40 merge.__doc__ = _merge_doc % '\nleft : DataFrame'
/usr/local/lib/python2.7/dist-packages/pandas/tools/merge.pyc in get_result(self)
190
191 llabels, rlabels = items_overlap_with_suffix(ldata.items, lsuf,
--> 192 rdata.items, rsuf)
193
194 lindexers = {1: left_indexer} if left_indexer is not None else {}
/usr/local/lib/python2.7/dist-packages/pandas/core/internals.pyc in items_overlap_with_suffix(left, lsuffix, right, rsuffix)
3969 if not lsuffix and not rsuffix:
3970 raise ValueError('columns overlap but no suffix specified: %s' %
-> 3971 to_rename)
3972
3973 def lrenamer(x):
ValueError: columns overlap but no suffix specified: Index([u'Sales'], dtype='object')
如何使用"Store"作为键使用pandas
合并"Sales"列的中位数? graphlab
代码虽然有效。
您可以使用 transform
:
>>> train['Median-Sales'] = train.groupby('Store')['Sales'].transform('median')
>>> train
Store Date Sales Customers Median-Sales
0 1 2015-07-31 5263 555 5263.0
1 2 2015-07-31 6064 625 6064.0
2 3 2015-07-31 8314 821 6568.0
3 4 2015-07-31 13995 1498 14669.5
4 3 2015-07-20 4822 559 6568.0
5 2 2015-07-10 5651 589 6064.0
6 4 2015-07-11 15344 1414 14669.5
7 5 2015-07-23 8492 833 8492.0
8 2 2015-07-19 8565 687 6064.0
9 10 2015-07-09 7185 681 7185.0
合并错误只是说您在左右框架中有重复的列名,因此您需要提供后缀来区分列或重命名列:
>>> right = train.groupby('Store')['Sales'].median()
>>> right.name = 'Median-Sales'
>>> train.join(right, on='Store')
Store Date Sales Customers Median-Sales
0 1 2015-07-31 5263 555 5263.0
1 2 2015-07-31 6064 625 6064.0
2 3 2015-07-31 8314 821 6568.0
3 4 2015-07-31 13995 1498 14669.5
4 3 2015-07-20 4822 559 6568.0
5 2 2015-07-10 5651 589 6064.0
6 4 2015-07-11 15344 1414 14669.5
7 5 2015-07-23 8492 833 8492.0
8 2 2015-07-19 8565 687 6064.0
9 10 2015-07-09 7185 681 7185.0