Python - 生成特定自相关数组

Python - generate array of specific autocorrelation

我有兴趣生成一个长度为 N 的数组(或 numpy 系列),它将在滞后 1 时表现出特定的自相关。理想情况下,我还想指定均值和方差,并从 (多)正态分布。但最重要的是,我想指定自相关。我如何使用 numpy 或 scikit-learn 执行此操作?

为了明确和准确,这是我要控制的自相关:

numpy.corrcoef(x[0:len(x) - 1], x[1:])[0][1]

如果你只对滞后的自相关感兴趣,你可以生成一个auto-regressive process of order one with the parameter equal to the desired auto-correlation; this property is mentioned on the Wikipedia page,但不难证明。

下面是一些示例代码:

import numpy as np

def sample_signal(n_samples, corr, mu=0, sigma=1):
    assert 0 < corr < 1, "Auto-correlation must be between 0 and 1"

    # Find out the offset `c` and the std of the white noise `sigma_e`
    # that produce a signal with the desired mean and variance.
    # See https://en.wikipedia.org/wiki/Autoregressive_model
    # under section "Example: An AR(1) process".
    c = mu * (1 - corr)
    sigma_e = np.sqrt((sigma ** 2) * (1 - corr ** 2))

    # Sample the auto-regressive process.
    signal = [c + np.random.normal(0, sigma_e)]
    for _ in range(1, n_samples):
        signal.append(c + corr * signal[-1] + np.random.normal(0, sigma_e))

    return np.array(signal)

def compute_corr_lag_1(signal):
    return np.corrcoef(signal[:-1], signal[1:])[0][1]

# Examples.
print(compute_corr_lag_1(sample_signal(5000, 0.5)))
print(np.mean(sample_signal(5000, 0.5, mu=2)))
print(np.std(sample_signal(5000, 0.5, sigma=3)))

参数 corr 可让您在滞后 1 处设置所需的自相关,可选参数 musigma 可让您控制生成的信号。