C++ 多项式输出准确度为 50%,内存地址为 50%
C++ Polynomial Output is 50% accurate and 50% memory address
我正在编写一个实现稀疏多项式的程序,其中两个全局结构定义如下:
//Global structs to represent a polynomial
struct Term {
int coeff;
int degree;
};
struct Node {
Term *term;
Node *next;
};
class 有一个私有 Node *poly;
我正在重载 *
运算符以获得两个多项式的乘积。
这个头文件包括定义:
//Returns a polynomial that is the product of polynomial a and b
friend const Polynomial operator *(const Polynomial &a, const Polynomial &b);
对于函数,我遍历每个表示多项式 (a & b) 的链表,直到达到 nullptr,添加度数,乘以系数,创建一个新项,将其插入到临时项多项式,并使用我的重载加法运算符将临时多项式添加到要返回的多项式。我已经测试了重载的加法运算符,但没有收到这个问题,所以我认为这不是导致这个问题的原因。问题是有时我得到正确答案,在示例输出中,第一个 运行 是正确的,另一个 运行 产生一些术语和一些地址:
>PolynomialTester
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
9 + 12*x^1 + 7*x^2 + 6*x^3 + 1*x^4 //Correct
>Exit code: 0 Time: 33.22
>PolynomialTester
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
4109104 + 9 + 12*x^1 + 3*x^2 + 2*x^3 + 1*x^4 + 4108992*x^4108944 + 4109392*x^4109136 //Nope
>Exit code: 0 Time: 19.54
我用于重载 *
的函数是:
const Polynomial operator *(const Polynomial &a, const Polynomial &b) {
//Computes the sum of two polynomials a + b
//Overloaded + operator
//The new polynomial that will be returned
Polynomial polyProduct;
Polynomial tempPoly;
//Temporary nodes to process
Node *tempA = a.poly;
Node *tempB;
while(tempA != nullptr) {
tempB = b.poly;
while(tempB != nullptr) {
int degree = tempA->term->degree + tempB->term->degree;
int coeff = tempA->term->coeff * tempB->term->coeff;
tempPoly.insert(Polynomial::newTerm(coeff, degree));
tempB = tempB->next;
}
polyProduct = polyProduct + tempPoly;
tempPoly.deletePoly();
tempA = tempA->next;
}
return polyProduct;
}
PS。 deletePoly() 遍历多项式并首先删除项,然后删除节点,直到它是 nullptr。
默认构造函数:
Term* Polynomial::newTerm(int c, int d) {
//Creates a new term
Term *newTerm = new Term;
newTerm->coeff = c;
newTerm->degree = d;
return newTerm;
}
Node* Polynomial::cons(Term *t, Node *p) {
//Creates a new node
Node *newNode = new Node;
newNode->term = t;
newNode->next = p;
return newNode;
}
Polynomial::Polynomial() {
//Creates the zero polynomial
poly = cons(newTerm(0, 0), nullptr);
}
多项式测试器:
int main() {
Polynomial newPoly;
Polynomial newPoly2;
Polynomial newPoly3;
newPoly.readPoly();
cout << "\n";
newPoly.printPoly();
cout << "\n";
newPoly2.readPoly();
cout << "\n";
newPoly2.printPoly();
newPoly3 = newPoly * newPoly2;
newPoly3.printPoly();
newPoly3.deletePoly();
newPoly2.deletePoly();
newPoly.deletePoly();
}
运算符+
const Polynomial operator +(const Polynomial &a, const Polynomial &b) {
//Computes the sum of two polynomials a + b
//Overloaded + operator
//The new polynomial that will be returned
Polynomial polySum;
//Temporary nodes to process
Node *tempA = a.poly;
Node *tempB = b.poly;
//While neither node A or B is equal to the nullptr
while(tempA != nullptr && tempB != nullptr) {
int degreeA = tempA->term->degree;
int degreeB = tempB->term->degree;
if(degreeA < degreeB) {
polySum.insert(tempA->term);
tempA = tempA->next;
}
else if(degreeA > degreeB) {
polySum.insert(tempB->term);
tempB = tempB->next;
}
else {
int coeff = tempA->term->coeff + tempB->term->coeff;
int degree = degreeA;
polySum.insert(Polynomial::newTerm(coeff, degree));
tempA = tempA->next;
tempB = tempB->next;
}
}
//Incase one of the polynomials still has remaining terms
while(tempA != nullptr) {
polySum.insert(tempA->term);
tempA = tempA->next;
}
//Incase one of the polynomials still has remaining terms
while(tempB != nullptr) {
polySum.insert(tempB->term);
tempB = tempB->next;
}
//Removes any zero coeffiecient terms
//Possibly due to a positive and negative coefficient being added
polySum.remZeroCoeff();
return polySum;
}
复制构造函数:
Polynomial::Polynomial(const Polynomial& oP) {
//Constructs a deep copy of the Polynomial being passed
poly = nullptr;
//The list to copy
Node *toCopy = oP.poly;
while(toCopy != nullptr) {
insert(toCopy->term);
poly->next = toCopy->next;
toCopy = toCopy->next;
}
}
重载赋值运算符,但目前在我的代码中已将其注释掉,因为它似乎只会让事情变得更糟
Polynomial& Polynomial::operator =(const Polynomial &a) {
//Check to see if it's passing itself
if(this == &a) {
return *this;
}
//Delete current polynomial
deletePoly();
//The poly to copy
Node *toCopy = a.poly;
while(toCopy != nullptr) {
poly = cons(toCopy->term, poly);
toCopy = toCopy->next;
}
//Return a reference to itself
return *this;
}
谁能帮助我理解为什么我有时会收到地址作为结果?
行tempPoly.deletePoly();是导致问题的原因,因此为了提高效率并解决问题,我在插入函数中添加了一个条件,用于检查传递的项的度是否等于当前多项式中的项度,如果是,则只需添加该项的系数并在不需要后删除该项。这消除了在重载*函数中进行任何删除或重载添加的需要,并提高了效率。
我正在编写一个实现稀疏多项式的程序,其中两个全局结构定义如下:
//Global structs to represent a polynomial
struct Term {
int coeff;
int degree;
};
struct Node {
Term *term;
Node *next;
};
class 有一个私有 Node *poly;
我正在重载 *
运算符以获得两个多项式的乘积。
这个头文件包括定义:
//Returns a polynomial that is the product of polynomial a and b
friend const Polynomial operator *(const Polynomial &a, const Polynomial &b);
对于函数,我遍历每个表示多项式 (a & b) 的链表,直到达到 nullptr,添加度数,乘以系数,创建一个新项,将其插入到临时项多项式,并使用我的重载加法运算符将临时多项式添加到要返回的多项式。我已经测试了重载的加法运算符,但没有收到这个问题,所以我认为这不是导致这个问题的原因。问题是有时我得到正确答案,在示例输出中,第一个 运行 是正确的,另一个 运行 产生一些术语和一些地址:
>PolynomialTester
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
9 + 12*x^1 + 7*x^2 + 6*x^3 + 1*x^4 //Correct
>Exit code: 0 Time: 33.22
>PolynomialTester
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
Enter numbebr of terms of the polynomial: 3
coefficient degree
Enter term 1: 3 0
Enter term 2: 2 1
Enter term 3: 1 2
3 + 2*x^1 + 1*x^2
4109104 + 9 + 12*x^1 + 3*x^2 + 2*x^3 + 1*x^4 + 4108992*x^4108944 + 4109392*x^4109136 //Nope
>Exit code: 0 Time: 19.54
我用于重载 *
的函数是:
const Polynomial operator *(const Polynomial &a, const Polynomial &b) {
//Computes the sum of two polynomials a + b
//Overloaded + operator
//The new polynomial that will be returned
Polynomial polyProduct;
Polynomial tempPoly;
//Temporary nodes to process
Node *tempA = a.poly;
Node *tempB;
while(tempA != nullptr) {
tempB = b.poly;
while(tempB != nullptr) {
int degree = tempA->term->degree + tempB->term->degree;
int coeff = tempA->term->coeff * tempB->term->coeff;
tempPoly.insert(Polynomial::newTerm(coeff, degree));
tempB = tempB->next;
}
polyProduct = polyProduct + tempPoly;
tempPoly.deletePoly();
tempA = tempA->next;
}
return polyProduct;
}
PS。 deletePoly() 遍历多项式并首先删除项,然后删除节点,直到它是 nullptr。
默认构造函数:
Term* Polynomial::newTerm(int c, int d) {
//Creates a new term
Term *newTerm = new Term;
newTerm->coeff = c;
newTerm->degree = d;
return newTerm;
}
Node* Polynomial::cons(Term *t, Node *p) {
//Creates a new node
Node *newNode = new Node;
newNode->term = t;
newNode->next = p;
return newNode;
}
Polynomial::Polynomial() {
//Creates the zero polynomial
poly = cons(newTerm(0, 0), nullptr);
}
多项式测试器:
int main() {
Polynomial newPoly;
Polynomial newPoly2;
Polynomial newPoly3;
newPoly.readPoly();
cout << "\n";
newPoly.printPoly();
cout << "\n";
newPoly2.readPoly();
cout << "\n";
newPoly2.printPoly();
newPoly3 = newPoly * newPoly2;
newPoly3.printPoly();
newPoly3.deletePoly();
newPoly2.deletePoly();
newPoly.deletePoly();
}
运算符+
const Polynomial operator +(const Polynomial &a, const Polynomial &b) {
//Computes the sum of two polynomials a + b
//Overloaded + operator
//The new polynomial that will be returned
Polynomial polySum;
//Temporary nodes to process
Node *tempA = a.poly;
Node *tempB = b.poly;
//While neither node A or B is equal to the nullptr
while(tempA != nullptr && tempB != nullptr) {
int degreeA = tempA->term->degree;
int degreeB = tempB->term->degree;
if(degreeA < degreeB) {
polySum.insert(tempA->term);
tempA = tempA->next;
}
else if(degreeA > degreeB) {
polySum.insert(tempB->term);
tempB = tempB->next;
}
else {
int coeff = tempA->term->coeff + tempB->term->coeff;
int degree = degreeA;
polySum.insert(Polynomial::newTerm(coeff, degree));
tempA = tempA->next;
tempB = tempB->next;
}
}
//Incase one of the polynomials still has remaining terms
while(tempA != nullptr) {
polySum.insert(tempA->term);
tempA = tempA->next;
}
//Incase one of the polynomials still has remaining terms
while(tempB != nullptr) {
polySum.insert(tempB->term);
tempB = tempB->next;
}
//Removes any zero coeffiecient terms
//Possibly due to a positive and negative coefficient being added
polySum.remZeroCoeff();
return polySum;
}
复制构造函数:
Polynomial::Polynomial(const Polynomial& oP) {
//Constructs a deep copy of the Polynomial being passed
poly = nullptr;
//The list to copy
Node *toCopy = oP.poly;
while(toCopy != nullptr) {
insert(toCopy->term);
poly->next = toCopy->next;
toCopy = toCopy->next;
}
}
重载赋值运算符,但目前在我的代码中已将其注释掉,因为它似乎只会让事情变得更糟
Polynomial& Polynomial::operator =(const Polynomial &a) {
//Check to see if it's passing itself
if(this == &a) {
return *this;
}
//Delete current polynomial
deletePoly();
//The poly to copy
Node *toCopy = a.poly;
while(toCopy != nullptr) {
poly = cons(toCopy->term, poly);
toCopy = toCopy->next;
}
//Return a reference to itself
return *this;
}
谁能帮助我理解为什么我有时会收到地址作为结果?
行tempPoly.deletePoly();是导致问题的原因,因此为了提高效率并解决问题,我在插入函数中添加了一个条件,用于检查传递的项的度是否等于当前多项式中的项度,如果是,则只需添加该项的系数并在不需要后删除该项。这消除了在重载*函数中进行任何删除或重载添加的需要,并提高了效率。