弹性搜索中嵌套字段的术语聚合
Terms Aggregation for nested field in Elastic Search
我在弹性搜索中有下一个字段映射(YML 中的定义):
my_analyzer:
type: custom
tokenizer: keyword
filter: lowercase
products_filter:
type: "nested"
properties:
filter_name: {"type" : "string", analyzer: "my_analyzer"}
filter_value: {"type" : "string" , analyzer: "my_analyzer"}
每个文档都有很多过滤器,看起来像:
"products_filter": [
{
"filter_name": "Rahmengröße",
"filter_value": "33,5 cm"
}
,
{
"filter_name": "color",
"filter_value": "gelb"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "39,5 cm"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "45,5 cm"
}]
我试图获取每个过滤器的唯一过滤器名称列表和唯一过滤器值列表。
我的意思是,我想要这样的结构:
Rahmengröße:
39,5 厘米
45.5 厘米
33.5 厘米
颜色:
gelb
为了得到它,我尝试了几种聚合变体,例如:
{
"aggs": {
"bla": {
"terms": {
"field": "products_filter.filter_name"
},
"aggs": {
"bla2": {
"terms": {
"field": "products_filter.filter_value"
}
}
}
}
}
}
而且这个请求是错误的。
它将 return 我的唯一过滤器名称列表,每个过滤器名称将包含所有 filter_values.
的列表
"bla": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 103,
"buckets": [
{
"key": "color",
"doc_count": 9,
"bla2": {
"doc_count_error_upper_bound": 4,
"sum_other_doc_count": 366,
"buckets": [
{
"key": "100",
"doc_count": 5
}
,
{
"key": "cm",
"doc_count": 5
}
,
{
"key": "unisex",
"doc_count": 5
}
,
{
"key": "11",
"doc_count": 4
}
,
{
"key": "160",
"doc_count": 4
}
,
{
"key": "22",
"doc_count": 4
}
,
{
"key": "a",
"doc_count": 4
}
,
{
"key": "alu",
"doc_count": 4
}
,
{
"key": "aluminium",
"doc_count": 4
}
,
{
"key": "aus",
"doc_count": 4
}
]
}
}
,
此外,我尝试使用反向嵌套聚合,但它对我没有帮助。
所以我认为我的尝试存在一些逻辑错误?
正如我所说。你的问题是你的文本被分析并且 elasticsearch 总是在令牌级别聚合。因此,为了解决这个问题,您的字段值必须作为单个标记进行索引。有两种选择:
- 不去分析它们
- 使用关键字分析器 + 小写(不区分大小写的聚合)对它们进行索引
因此,这将是创建带有小写过滤器和删除重音字符(ö => o
和 ß => ss
以及您的字段的其他字段的自定义关键字分析器的设置,因此它们可用于聚合(raw
和 keyword
):
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer_keyword": {
"type": "custom",
"tokenizer": "keyword",
"filter": [
"asciifolding",
"lowercase"
]
}
}
}
},
"mappings": {
"data": {
"properties": {
"products_filter": {
"type": "nested",
"properties": {
"filter_name": {
"type": "string",
"analyzer": "standard",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed"
},
"keyword": {
"type": "string",
"analyzer": "my_analyzer_keyword"
}
}
},
"filter_value": {
"type": "string",
"analyzer": "standard",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed"
},
"keyword": {
"type": "string",
"analyzer": "my_analyzer_keyword"
}
}
}
}
}
}
}
}
}
一份测试文档,您给了我们:
PUT /test/data/1
{
"products_filter": [
{
"filter_name": "Rahmengröße",
"filter_value": "33,5 cm"
},
{
"filter_name": "color",
"filter_value": "gelb"
},
{
"filter_name": "Rahmengröße",
"filter_value": "39,5 cm"
},
{
"filter_name": "Rahmengröße",
"filter_value": "45,5 cm"
}
]
}
这将是使用 raw
字段聚合的查询:
GET /test/_search
{
"size": 0,
"aggs": {
"Nesting": {
"nested": {
"path": "products_filter"
},
"aggs": {
"raw_names": {
"terms": {
"field": "products_filter.filter_name.raw",
"size": 0
},
"aggs": {
"raw_values": {
"terms": {
"field": "products_filter.filter_value.raw",
"size": 0
}
}
}
}
}
}
}
}
它确实带来了预期的结果(带有过滤器名称的桶和带有它们的值的子桶):
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0,
"hits": []
},
"aggregations": {
"Nesting": {
"doc_count": 4,
"raw_names": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Rahmengröße",
"doc_count": 3,
"raw_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "33,5 cm",
"doc_count": 1
},
{
"key": "39,5 cm",
"doc_count": 1
},
{
"key": "45,5 cm",
"doc_count": 1
}
]
}
},
{
"key": "color",
"doc_count": 1,
"raw_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "gelb",
"doc_count": 1
}
]
}
}
]
}
}
}
}
或者,您可以将字段与关键字分析器(和一些规范化)一起使用以获得更通用且不区分大小写的结果:
GET /test/_search
{
"size": 0,
"aggs": {
"Nesting": {
"nested": {
"path": "products_filter"
},
"aggs": {
"keyword_names": {
"terms": {
"field": "products_filter.filter_name.keyword",
"size": 0
},
"aggs": {
"keyword_values": {
"terms": {
"field": "products_filter.filter_value.keyword",
"size": 0
}
}
}
}
}
}
}
}
这是结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0,
"hits": []
},
"aggregations": {
"Nesting": {
"doc_count": 4,
"keyword_names": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "rahmengrosse",
"doc_count": 3,
"keyword_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "33,5 cm",
"doc_count": 1
},
{
"key": "39,5 cm",
"doc_count": 1
},
{
"key": "45,5 cm",
"doc_count": 1
}
]
}
},
{
"key": "color",
"doc_count": 1,
"keyword_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "gelb",
"doc_count": 1
}
]
}
}
]
}
}
}
}
我在弹性搜索中有下一个字段映射(YML 中的定义):
my_analyzer:
type: custom
tokenizer: keyword
filter: lowercase
products_filter:
type: "nested"
properties:
filter_name: {"type" : "string", analyzer: "my_analyzer"}
filter_value: {"type" : "string" , analyzer: "my_analyzer"}
每个文档都有很多过滤器,看起来像:
"products_filter": [
{
"filter_name": "Rahmengröße",
"filter_value": "33,5 cm"
}
,
{
"filter_name": "color",
"filter_value": "gelb"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "39,5 cm"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "45,5 cm"
}]
我试图获取每个过滤器的唯一过滤器名称列表和唯一过滤器值列表。
我的意思是,我想要这样的结构:
Rahmengröße:
39,5 厘米
45.5 厘米
33.5 厘米
颜色:
gelb
为了得到它,我尝试了几种聚合变体,例如:
{
"aggs": {
"bla": {
"terms": {
"field": "products_filter.filter_name"
},
"aggs": {
"bla2": {
"terms": {
"field": "products_filter.filter_value"
}
}
}
}
}
}
而且这个请求是错误的。
它将 return 我的唯一过滤器名称列表,每个过滤器名称将包含所有 filter_values.
的列表"bla": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 103,
"buckets": [
{
"key": "color",
"doc_count": 9,
"bla2": {
"doc_count_error_upper_bound": 4,
"sum_other_doc_count": 366,
"buckets": [
{
"key": "100",
"doc_count": 5
}
,
{
"key": "cm",
"doc_count": 5
}
,
{
"key": "unisex",
"doc_count": 5
}
,
{
"key": "11",
"doc_count": 4
}
,
{
"key": "160",
"doc_count": 4
}
,
{
"key": "22",
"doc_count": 4
}
,
{
"key": "a",
"doc_count": 4
}
,
{
"key": "alu",
"doc_count": 4
}
,
{
"key": "aluminium",
"doc_count": 4
}
,
{
"key": "aus",
"doc_count": 4
}
]
}
}
,
此外,我尝试使用反向嵌套聚合,但它对我没有帮助。
所以我认为我的尝试存在一些逻辑错误?
正如我所说。你的问题是你的文本被分析并且 elasticsearch 总是在令牌级别聚合。因此,为了解决这个问题,您的字段值必须作为单个标记进行索引。有两种选择:
- 不去分析它们
- 使用关键字分析器 + 小写(不区分大小写的聚合)对它们进行索引
因此,这将是创建带有小写过滤器和删除重音字符(ö => o
和 ß => ss
以及您的字段的其他字段的自定义关键字分析器的设置,因此它们可用于聚合(raw
和 keyword
):
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer_keyword": {
"type": "custom",
"tokenizer": "keyword",
"filter": [
"asciifolding",
"lowercase"
]
}
}
}
},
"mappings": {
"data": {
"properties": {
"products_filter": {
"type": "nested",
"properties": {
"filter_name": {
"type": "string",
"analyzer": "standard",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed"
},
"keyword": {
"type": "string",
"analyzer": "my_analyzer_keyword"
}
}
},
"filter_value": {
"type": "string",
"analyzer": "standard",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed"
},
"keyword": {
"type": "string",
"analyzer": "my_analyzer_keyword"
}
}
}
}
}
}
}
}
}
一份测试文档,您给了我们:
PUT /test/data/1
{
"products_filter": [
{
"filter_name": "Rahmengröße",
"filter_value": "33,5 cm"
},
{
"filter_name": "color",
"filter_value": "gelb"
},
{
"filter_name": "Rahmengröße",
"filter_value": "39,5 cm"
},
{
"filter_name": "Rahmengröße",
"filter_value": "45,5 cm"
}
]
}
这将是使用 raw
字段聚合的查询:
GET /test/_search
{
"size": 0,
"aggs": {
"Nesting": {
"nested": {
"path": "products_filter"
},
"aggs": {
"raw_names": {
"terms": {
"field": "products_filter.filter_name.raw",
"size": 0
},
"aggs": {
"raw_values": {
"terms": {
"field": "products_filter.filter_value.raw",
"size": 0
}
}
}
}
}
}
}
}
它确实带来了预期的结果(带有过滤器名称的桶和带有它们的值的子桶):
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0,
"hits": []
},
"aggregations": {
"Nesting": {
"doc_count": 4,
"raw_names": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Rahmengröße",
"doc_count": 3,
"raw_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "33,5 cm",
"doc_count": 1
},
{
"key": "39,5 cm",
"doc_count": 1
},
{
"key": "45,5 cm",
"doc_count": 1
}
]
}
},
{
"key": "color",
"doc_count": 1,
"raw_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "gelb",
"doc_count": 1
}
]
}
}
]
}
}
}
}
或者,您可以将字段与关键字分析器(和一些规范化)一起使用以获得更通用且不区分大小写的结果:
GET /test/_search
{
"size": 0,
"aggs": {
"Nesting": {
"nested": {
"path": "products_filter"
},
"aggs": {
"keyword_names": {
"terms": {
"field": "products_filter.filter_name.keyword",
"size": 0
},
"aggs": {
"keyword_values": {
"terms": {
"field": "products_filter.filter_value.keyword",
"size": 0
}
}
}
}
}
}
}
}
这是结果:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0,
"hits": []
},
"aggregations": {
"Nesting": {
"doc_count": 4,
"keyword_names": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "rahmengrosse",
"doc_count": 3,
"keyword_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "33,5 cm",
"doc_count": 1
},
{
"key": "39,5 cm",
"doc_count": 1
},
{
"key": "45,5 cm",
"doc_count": 1
}
]
}
},
{
"key": "color",
"doc_count": 1,
"keyword_values": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "gelb",
"doc_count": 1
}
]
}
}
]
}
}
}
}