randomForest [R] 不接受逻辑变量作为响应,而是接受它作为预测变量吗?

does randomForest [R] not accept logical variable as response, but accept it as predictor?

您好,我在 R 中使用 randomForest,它不接受逻辑变量作为响应 (Y),但似乎接受它作为预测变量 (X)。我有点惊讶 b/c 我认为逻辑本质上是 2-class 因素...

我的问题是:randomForest 是否真的接受逻辑作为预测变量,而不是作为响应?为什么会这样? 其他常见模型(glmnet、svm、...)是否接受逻辑变量?

任何 explanation/discussion 表示赞赏。谢谢

N = 100

data1 = data.frame(age = sample(1:80, N, replace=T),
                   sex = sample(c('M', 'F'), N, replace=T),
                   veteran = sample(c(T, F), N, replace=T),
                   exercise = sample(c(T, F), N, replace=T))

sapply(data1, class)
#       age       sex   veteran  exercise 
# "integer"  "factor" "logical" "logical" 

# this doesnt work b/c exercise is logical
rf = randomForest(exercise ~ ., data = data1, importance = T)
# Warning message:
#         In randomForest.default(m, y, ...) :
#         The response has five or fewer unique values.  Are you sure you want to do regression?

# this works, and veteran and exercise (logical) work as predictors
rf = randomForest(sex ~ ., data = data1, importance = T)
importance(rf)
#                   F         M MeanDecreaseAccuracy MeanDecreaseGini
# age      -2.0214486 -7.584637            -6.242150         6.956147
# veteran   4.6509542  3.168551             4.605862         1.846428
# exercise -0.1205806 -6.226174            -3.924871         1.013030

# convert it to factor and it works
rf = randomForest(as.factor(exercise) ~ ., data = data1, importance = T)

这种行为的原因是 randomForest 还能够进行回归(除了分类)。你也可以在你得到的警告信息中观察到:

The response has five or fewer unique values. Are you sure you want to do regression?

该函数根据给定响应向量的类型在回归和分类之间做出决定。如果是因素分类,则进行回归(这是有道理的,因为回归响应向量永远不会是因素/分类变量)。

关于您的问题:在您的输入数据集(预测变量)中使用逻辑变量是没有问题的,randomForest 能够像您期望的那样完美地处理它。

training_data <- data.frame(x = rep(c(T,F), times = 1000)) # training data with logical
response <- as.factor(rep(c(F,T), times = 1000)) # inverse of training data
randomForest(response ~ ., data = training_data) # returns 100% accurate classifier

编辑:

why they don't include this coercion (logical to factor) in the source code?

这是猜测,但可能是为了保持一致性和简单性。他们将不得不更改文档

If a factor, classification is assumed, otherwise regression is assumed

If a factor or a logical vector, classification is assumed, otherwise regression is assumed

然后人们可能会出现询问角色... 如果您的逻辑响应向量仅包含 TRUE 或 FALSE 值,您也会遇到问题。如果你强迫这样一个向量分解,它只会有一个层次。 (尽管在结果始终为 FALSE 的数据集上训练模型并没有真正意义)

但是,如果作者包含这样一个 "intelligent" 强制转换,他们将不得不处理这些问题并定义那些边界情况下的行为,并将其记录下来。