多路交互:获得数值系数估计的简单方法?

Multi-way interaction: easy way to get numerical coefficient estimates?

假设有一个 4 向交互,具有 2x2x2 因子设计和一个连续变量。 因子具有默认对比编码 (contr.treatment)。这是一个例子:

set.seed(1)

cat1 <- as.factor(sample(letters[1:2], 1000, replace = TRUE))
cat2 <- as.factor(sample(letters[3:4], 1000, replace = TRUE))
cat3 <- as.factor(sample(letters[5:6], 1000, replace = TRUE))
cont1 <- rnorm(1000)
resp <- rnorm(1000)
df <- data.frame(cat1, cat2, cat3, cont1, resp)

mod <- lm(resp ~ cont1 * cat1 * cat2 * cat3, data = df)

查看 coef(mod) 的输出,我们得到如下内容:

        (Intercept)                   cont1                   cat1b 
        0.019822407             0.011990238             0.207604677 
              cat2d                   cat3f             cont1:cat1b 
       -0.010132897             0.105397591            -0.001153867 
        cont1:cat2d             cat1b:cat2d             cont1:cat3f 
        0.023358901            -0.194991402             0.060960695 
        cat1b:cat3f             cat2d:cat3f       cont1:cat1b:cat2d 
       -0.240624582            -0.117278931            -0.069880751 
  cont1:cat1b:cat3f       cont1:cat2d:cat3f       cat1b:cat2d:cat3f 
       -0.120446848            -0.141688864             0.136945262 
cont1:cat1b:cat2d:cat3f 
        0.201792298 

为了获得 cat1b 的估计截距(例如),我们将添加隐含的 (Intercept) 项和 cat1b,即 coef(mod)[1] + coef(mod)[3]。要获得同一类别的斜率变化,我们将使用 coef(mod)[2] + coef(mod)[6]a la this r-bloggers post。将它们全部写出来是非常乏味的,而且 methods(class="lm") 看起来没有任何函数可以立即执行此操作。

是否有一些明显的方法来获得每种因素组合的截距和斜率的数值估计值?

您正在查找 lsmeans 包。看看:

lstrends(mod, specs = c('cat1', 'cat2', 'cat3'), var = 'cont1')

cat1 cat2 cat3 cont1.trend         SE  df    lower.CL  upper.CL
 a    c    e     0.01199024 0.08441129 984 -0.15365660 0.1776371
 b    c    e     0.01083637 0.08374605 984 -0.15350502 0.1751778
 a    d    e     0.03534914 0.09077290 984 -0.14278157 0.2134799
 b    d    e    -0.03568548 0.09644117 984 -0.22493948 0.1535685
 a    c    f     0.07295093 0.08405090 984 -0.09198868 0.2378905
 b    c    f    -0.04864978 0.09458902 984 -0.23426916 0.1369696
 a    d    f    -0.04537903 0.09363128 984 -0.22911897 0.1383609
 b    d    f    -0.03506820 0.08905581 984 -0.20982934 0.1396929