梯度下降 ANN - MATLAB 正在做什么而我没有?

Gradient Descent ANN - What is MATLAB doing that I'm not?

我正在尝试使用梯度下降反向传播在 Python 中重新创建一个简单的 MLP 人工神经网络。我的目标是尝试重新创建 MATLAB 的 ANN 产生的精度,但我什至没有接近。我使用与 MATLAB 相同的参数;相同数量的隐藏节点 (20)、1000 个纪元、0.01 的学习率 (alpha) 和相同的数据(显然),但我的代码在改进结果方面没有取得进展,而 MATLAB 的准确度在 98% 左右。

我试图通过 MATLAB 进行调试以查看它在做什么,但我的运气并不好。我相信 MATLAB 在 0 和 1 之间缩放输入数据,并为输入添加偏差,我在 Python 代码中使用了这两者。

MATLAB 做了什么使结果高得多?或者,更有可能的是,我的 Python 代码做错了什么导致结果如此糟糕?我能想到的是权重启动不当、数据读取不正确、处理数据操作不正确或 incorrect/poor 激活函数(我也尝试过 tanh,结果相同)。

我的尝试在下面,基于我在网上找到的代码并稍微调整以读取我的数据,而 MATLAB 脚本(只有 11 行代码)在下面。底部是我使用的数据集的 link(我也是通过 MATLAB 获得的):

感谢您的帮助。

Main.py

import numpy as np
import Process
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer
import warnings


def sigmoid(x):
    return 1.0/(1.0 + np.exp(-x))


def sigmoid_prime(x):
    return sigmoid(x)*(1.0-sigmoid(x))


class NeuralNetwork:

    def __init__(self, layers):

        self.activation = sigmoid
        self.activation_prime = sigmoid_prime

        # Set weights
        self.weights = []
        # layers = [2,2,1]
        # range of weight values (-1,1)
        # input and hidden layers - random((2+1, 2+1)) : 3 x 3
        for i in range(1, len(layers) - 1):
            r = 2*np.random.random((layers[i-1] + 1, layers[i] + 1)) - 1
            self.weights.append(r)
        # output layer - random((2+1, 1)) : 3 x 1
        r = 2*np.random.random((layers[i] + 1, layers[i+1])) - 1
        self.weights.append(r)

    def fit(self, X, y, learning_rate, epochs):
        # Add column of ones to X
        # This is to add the bias unit to the input layer
        ones = np.atleast_2d(np.ones(X.shape[0]))
        X = np.concatenate((ones.T, X), axis=1)

        for k in range(epochs):

            i = np.random.randint(X.shape[0])
            a = [X[i]]

            for l in range(len(self.weights)):
                    dot_value = np.dot(a[l], self.weights[l])
                    activation = self.activation(dot_value)
                    a.append(activation)
            # output layer
            error = y[i] - a[-1]
            deltas = [error * self.activation_prime(a[-1])]

            # we need to begin at the second to last layer
            # (a layer before the output layer)
            for l in range(len(a) - 2, 0, -1):
                deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_prime(a[l]))

            # reverse
            # [level3(output)->level2(hidden)]  => [level2(hidden)->level3(output)]
            deltas.reverse()

            # backpropagation
            # 1. Multiply its output delta and input activation
            #    to get the gradient of the weight.
            # 2. Subtract a ratio (percentage) of the gradient from the weight.
            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate * layer.T.dot(delta)

    def predict(self, x):
        a = np.concatenate((np.ones(1).T, np.array(x)))
        for l in range(0, len(self.weights)):
            a = self.activation(np.dot(a, self.weights[l]))
        return a

# Create neural net, 13 inputs, 20 hidden nodes, 3 outputs
nn = NeuralNetwork([13, 20, 3])
data = Process.readdata('wine')
# Split data out into input and output
X = data[0]
y = data[1]
# Normalise input data between 0 and 1.
X -= X.min()
X /= X.max()

# Split data into training and test sets (15% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15)

# Create binay output form
y_ = LabelBinarizer().fit_transform(y_train)

# Train data
lrate = 0.01
epoch = 1000
nn.fit(X_train, y_, lrate, epoch)

# Test data
err = []
for e in X_test:
    # Create array of output data (argmax to get classification)
    err.append(np.argmax(nn.predict(e)))

# Hide warnings. UndefinedMetricWarning thrown when confusion matrix returns 0 in any one of the classifiers.
warnings.filterwarnings('ignore')
# Produce confusion matrix and classification report
print(confusion_matrix(y_test, err))
print(classification_report(y_test, err))

# Plot actual and predicted data
plt.figure(figsize=(10, 8))
target, = plt.plot(y_test, color='b', linestyle='-', lw=1, label='Target')
estimated, = plt.plot(err, color='r', linestyle='--', lw=3, label='Estimated')
plt.legend(handles=[target, estimated])
plt.xlabel('# Samples')
plt.ylabel('Classification Value')
plt.grid()
plt.show()

Process.py

import csv
import numpy as np


# Add constant column of 1's
def addones(arrayvar):
    return np.hstack((np.ones((arrayvar.shape[0], 1)), arrayvar))


def readdata(loc):
    # Open file and calculate the number of columns and the number of rows. The number of rows has a +1 as the 'next'
    # operator in num_cols has already pasted over the first row.
    with open(loc + '.input.csv') as f:
        file = csv.reader(f, delimiter=',', skipinitialspace=True)
        num_cols = len(next(file))
        num_rows = len(list(file))+1

    # Create a zero'd array based on the number of column and rows previously found.
    x = np.zeros((num_rows, num_cols))
    y = np.zeros(num_rows)

    # INPUT #
    # Loop through the input file and put each row into a new row of 'samples'
    with open(loc + '.input.csv', newline='') as csvfile:
        file = csv.reader(csvfile, delimiter=',')
        count = 0
        for row in file:
            x[count] = row
            count += 1

    # OUTPUT #
    # Do the same and loop through the output file.
    with open(loc + '.output.csv', newline='') as csvfile:
        file = csv.reader(csvfile, delimiter=',')
        count = 0
        for row in file:
            y[count] = row[0]
            count += 1

    # Set data type
    x = np.array(x).astype(np.float)
    y = np.array(y).astype(np.int)

    return x, y

MATLAB 脚本

%% LOAD DATA 
[x1,t1] = wine_dataset;

%% SET UP NN 
net = patternnet(20); 
net.trainFcn = 'traingd'; 
net.layers{2}.transferFcn = 'logsig'; 
net.derivFcn = 'logsig';

%% TRAIN AND TEST
[net,tr] = train(net,x1,t1);

数据文件可以在这里下载: input output

我认为您混淆了术语 epochstep。如果你训练了一个 epoch 它通常指的是 运行 通过所有数据。

例如:如果您有 10.000 个样本,那么您已将所有 10.000 个样本(忽略样本的随机抽样)放入您的模型并每次采取一个步骤(更新您的权重)。

修复: 运行 您的网络更长时间:

nn.fit(X_train, y_, lrate, epoch*len(X))

奖金: MatLab 的文档将 epochs 翻译成 (iterations) here which is misleading, but comments on it here 这基本上就是我上面写的。

我相信我已经找到问题所在。这是数据集本身(并非所有数据集都出现此问题)和我缩放数据的方式的组合。我原来的缩放方法处理的结果介于 0 和 1 之间,对这种情况没有帮助,导致看到的结果很差:

# Normalise input data between 0 and 1.
X -= X.min()
X /= X.max()

我发现了另一种缩放方法,由 sklearn 预处理包提供:

from sklearn import preprocessing
X = preprocessing.scale(X)

这种缩放方法不在 0 和 1 之间,我进一步调查以确定为什么它有这么大的帮助,但现在返回的结果准确率为 96 到 100%。与 MATLAB 结果非常一致,我认为这是使用类似(或相同)的预处理缩放方法。

正如我上面所说,并非所有数据集都是这种情况。使用内置的 sklearn 虹膜或数字数据集似乎可以在不缩放的情况下产生良好的结果。