随机矩阵所有行的快速随机加权选择

Fast random weighted selection across all rows of a stochastic matrix

numpy.random.choice 允许从向量中进行加权选择,即

arr = numpy.array([1, 2, 3])
weights = numpy.array([0.2, 0.5, 0.3])
choice = numpy.random.choice(arr, p=weights) 

选择 1 的概率为 0.2,选择 2 的概率为 0.5,选择 3 的概率为 0.3。

如果我们想以向量化的方式快速为二维数组(矩阵)执行此操作,其中每一行都是概率向量怎么办?也就是说,我们想要一个来自随机矩阵的选择向量?这是超级慢的方式:

import numpy as np

m = 10
n = 100 # Or some very large number

items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)

choices = np.zeros((n,))
# This is slow, because of the loop in Python
for i in range(n):
    choices[i] = np.random.choice(items, p=prob_matrix[:,i])

print(choices):

array([ 4.,  7.,  8.,  1.,  0.,  4.,  3.,  7.,  1.,  5.,  7.,  5.,  3.,
        1.,  9.,  1.,  1.,  5.,  9.,  8.,  2.,  3.,  2.,  6.,  4.,  3.,
        8.,  4.,  1.,  1.,  4.,  0.,  1.,  8.,  5.,  3.,  9.,  9.,  6.,
        5.,  4.,  8.,  4.,  2.,  4.,  0.,  3.,  1.,  2.,  5.,  9.,  3.,
        9.,  9.,  7.,  9.,  3.,  9.,  4.,  8.,  8.,  7.,  6.,  4.,  6.,
        7.,  9.,  5.,  0.,  6.,  1.,  3.,  3.,  2.,  4.,  7.,  0.,  6.,
        3.,  5.,  8.,  0.,  8.,  3.,  4.,  5.,  2.,  2.,  1.,  1.,  9.,
        9.,  4.,  3.,  3.,  2.,  8.,  0.,  6.,  1.])

This post suggests that cumsum and bisect could be a potential approach, and is fast. But while numpy.cumsum(arr, axis=1) can do this along one axis of a numpy array, the bisect.bisect function only works on a single array at a time. Similarly, numpy.searchsorted 也仅适用于一维数组。

是否有仅使用向量化运算的快速方法?

我认为不可能将其完全矢量化,但您仍然可以通过尽可能多地矢量化来获得不错的加速。这是我想出的:

def improved(prob_matrix, items):
    # transpose here for better data locality later
    cdf = np.cumsum(prob_matrix.T, axis=1)
    # random numbers are expensive, so we'll get all of them at once
    ridx = np.random.random(size=n)
    # the one loop we can't avoid, made as simple as possible
    idx = np.zeros(n, dtype=int)
    for i, r in enumerate(ridx):
      idx[i] = np.searchsorted(cdf[i], r)
    # fancy indexing all at once is faster than indexing in a loop
    return items[idx]

针对问题中的版本进行测试:

def original(prob_matrix, items):
    choices = np.zeros((n,))
    # This is slow, because of the loop in Python
    for i in range(n):
        choices[i] = np.random.choice(items, p=prob_matrix[:,i])
    return choices

这是加速(使用问题中给出的设置代码):

In [45]: %timeit original(prob_matrix, items)
100 loops, best of 3: 2.86 ms per loop

In [46]: %timeit improved(prob_matrix, items)
The slowest run took 4.15 times longer than the fastest. This could mean that an intermediate result is being cached
10000 loops, best of 3: 157 µs per loop

我不确定为什么我的版本在时间上存在很大差异,但即使是最慢的 运行(~650 微秒)仍然快了将近 5 倍。

这是一个非常快的完全矢量化版本:

def vectorized(prob_matrix, items):
    s = prob_matrix.cumsum(axis=0)
    r = np.random.rand(prob_matrix.shape[1])
    k = (s < r).sum(axis=0)
    return items[k]

理论上searchsorted是用来查找累积求和概率中的随机值的正确函数,但是m相对小,k = (s < r).sum(axis=0) 最终会快得多。它的时间复杂度是 O(m),而 searchsorted 方法是 O(log(m)),但这只会影响更大的 mcumsum是O(m),所以vectorized和@perimosocordiae的improved都是O(m)。 (如果您的 m 实际上要大得多,则您必须 运行 进行一些测试以了解 m 可以有多大,然后此方法才会变慢。)

这是我用 m = 10n = 10000 得到的时间(使用来自@perimosocordiae 的回答的函数 originalimproved):

In [115]: %timeit original(prob_matrix, items)
1 loops, best of 3: 270 ms per loop

In [116]: %timeit improved(prob_matrix, items)
10 loops, best of 3: 24.9 ms per loop

In [117]: %timeit vectorized(prob_matrix, items)
1000 loops, best of 3: 1 ms per loop

定义函数的完整脚本是:

import numpy as np


def improved(prob_matrix, items):
    # transpose here for better data locality later
    cdf = np.cumsum(prob_matrix.T, axis=1)
    # random numbers are expensive, so we'll get all of them at once
    ridx = np.random.random(size=n)
    # the one loop we can't avoid, made as simple as possible
    idx = np.zeros(n, dtype=int)
    for i, r in enumerate(ridx):
        idx[i] = np.searchsorted(cdf[i], r)
    # fancy indexing all at once is faster than indexing in a loop
    return items[idx]


def original(prob_matrix, items):
    choices = np.zeros((n,))
    # This is slow, because of the loop in Python
    for i in range(n):
        choices[i] = np.random.choice(items, p=prob_matrix[:,i])
    return choices


def vectorized(prob_matrix, items):
    s = prob_matrix.cumsum(axis=0)
    r = np.random.rand(prob_matrix.shape[1])
    k = (s < r).sum(axis=0)
    return items[k]


m = 10
n = 10000 # Or some very large number

items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)