使用 numpy 数组加速牛顿法
Speed up Newtons Method using numpy arrays
我正在使用牛顿法生成分形,以可视化根和找到根所需的迭代次数。
我对完成功能的速度不满意。有什么方法可以加快我的代码速度吗?
def f(z):
return z**4-1
def f_prime(z):
'''Analytic derivative'''
return 4*z**3
def newton_raphson(x, y, max_iter=20, eps = 1.0e-20):
z = x + y * 1j
iter = np.zeros((len(z), len(z)))
for i in range(max_iter):
z_old = z
z = z-(f(z)/f_prime(z))
for k in range(len(z[:,0])): #this bit of the code is slow. Can I do this WITHOUT for loops?
for j in range(len(z[:,1])):
if iter[k,j] != 0:
continue
if z[k,j] == z_old[k,j]:
iter[k,j] = i
return np.angle(z), iter #return argument of root and iterations taken
n_points = 1000; xmin = -1.5; xmax = 1.5
xs = np.linspace(xmin, xmax, n_points)
X,Y = np.meshgrid(xs, xs)
dat = newton_raphson(X, Y)
您可以简单地矢量化循环以获得相当大的速度增益:
def newton_raphson(x, y, max_iter=20, eps = 1.0e-20):
z = x + y * 1j
nz = len(z)
iters = np.zeros((nz, nz))
for i in range(max_iter):
z_old = z
z = z-(f(z)/f_prime(z))
mask = (iters == 0) & (z == z_old)
iters[mask] = i
return np.angle(z), items
你给出的方程式相当简单;但是,我认为您的 f
和 f_prime
函数要复杂得多。在这些方程式中而不是在提出的问题中可能会发现进一步的加速。
我也会避免使用 iter
作为变量名,因为它是内置的 python 函数。
这应该是您正在寻找的,并且适用于所有形状的 numpy 数组。
def newton_numpy(x, y, max_iter=1000, eps = 1e-5):
z = x + y * 1j
# deltas is to store the differences between to iterations
deltas = np.ones_like(z)
# this is to store how many iterations were used for each element in z
needed_iterations = np.zeros_like(z, dtype=int)
it = 0
# we loop until max_iter or every element converged
while it < max_iter and np.any(deltas > eps):
z_old = z.copy()
# recalculate only for values that have not yet converged
mask = deltas > eps
z[mask] = z[mask] - (f(z[mask]) / f_prime(z[mask]))
needed_iterations[mask] += 1
deltas[mask] = np.abs(z_old[mask] - z[mask])
it += 1
return np.angle(z), needed_iterations
使用此代码:
n_points = 25
xmin = -1.5
xmax = 1.5
xs = np.linspace(xmin, xmax, n_points)
X, Y = np.meshgrid(xs, xs)
ang, iters = newton_numpy(X, Y, eps=1e-5, max_iters=1000)
每个元素需要 0.09 秒和平均 85 次迭代。
除了矢量化循环之外可能的优化
- 保存
z[mask]
的结果以避免重复使用花哨的索引(快约 80%)
- 将
z - f(z) / f_prime(z)
合并为一个函数(在本例中为 ~25%)
- 如果可以接受较大的误差 (~90%),则使用较低的精度 (
dtype=np.complex64
)
- 使用广播而不是 meshgrid 创建 z 平面(效果可以忽略不计,但通常是个好主意)。
def iterstep(z):
return 0.75*z + 0.25 / z**3
def newton_raphson(Re, Im, max_iter):
z = Re + 1j * Im[:, np.newaxis]
itercount = np.zeros_like(z, dtype=np.int32)
mask = np.ones_like(z, dtype=np.bool)
for i in range(max_iter):
z_old = z.copy()
z[mask] = iterstep(z[mask])
mask = (z != z_old)
itercount[mask] = i
return np.angle(z), itercount
axis = np.linspace(-1.5, 1.5, num=1000, dtype=np.complex64)
angle, itercount = newton_raphson(Re=axis, Im=axis, max_iter=20)
我正在使用牛顿法生成分形,以可视化根和找到根所需的迭代次数。
我对完成功能的速度不满意。有什么方法可以加快我的代码速度吗?
def f(z):
return z**4-1
def f_prime(z):
'''Analytic derivative'''
return 4*z**3
def newton_raphson(x, y, max_iter=20, eps = 1.0e-20):
z = x + y * 1j
iter = np.zeros((len(z), len(z)))
for i in range(max_iter):
z_old = z
z = z-(f(z)/f_prime(z))
for k in range(len(z[:,0])): #this bit of the code is slow. Can I do this WITHOUT for loops?
for j in range(len(z[:,1])):
if iter[k,j] != 0:
continue
if z[k,j] == z_old[k,j]:
iter[k,j] = i
return np.angle(z), iter #return argument of root and iterations taken
n_points = 1000; xmin = -1.5; xmax = 1.5
xs = np.linspace(xmin, xmax, n_points)
X,Y = np.meshgrid(xs, xs)
dat = newton_raphson(X, Y)
您可以简单地矢量化循环以获得相当大的速度增益:
def newton_raphson(x, y, max_iter=20, eps = 1.0e-20):
z = x + y * 1j
nz = len(z)
iters = np.zeros((nz, nz))
for i in range(max_iter):
z_old = z
z = z-(f(z)/f_prime(z))
mask = (iters == 0) & (z == z_old)
iters[mask] = i
return np.angle(z), items
你给出的方程式相当简单;但是,我认为您的 f
和 f_prime
函数要复杂得多。在这些方程式中而不是在提出的问题中可能会发现进一步的加速。
我也会避免使用 iter
作为变量名,因为它是内置的 python 函数。
这应该是您正在寻找的,并且适用于所有形状的 numpy 数组。
def newton_numpy(x, y, max_iter=1000, eps = 1e-5):
z = x + y * 1j
# deltas is to store the differences between to iterations
deltas = np.ones_like(z)
# this is to store how many iterations were used for each element in z
needed_iterations = np.zeros_like(z, dtype=int)
it = 0
# we loop until max_iter or every element converged
while it < max_iter and np.any(deltas > eps):
z_old = z.copy()
# recalculate only for values that have not yet converged
mask = deltas > eps
z[mask] = z[mask] - (f(z[mask]) / f_prime(z[mask]))
needed_iterations[mask] += 1
deltas[mask] = np.abs(z_old[mask] - z[mask])
it += 1
return np.angle(z), needed_iterations
使用此代码:
n_points = 25
xmin = -1.5
xmax = 1.5
xs = np.linspace(xmin, xmax, n_points)
X, Y = np.meshgrid(xs, xs)
ang, iters = newton_numpy(X, Y, eps=1e-5, max_iters=1000)
每个元素需要 0.09 秒和平均 85 次迭代。
除了矢量化循环之外可能的优化
- 保存
z[mask]
的结果以避免重复使用花哨的索引(快约 80%) - 将
z - f(z) / f_prime(z)
合并为一个函数(在本例中为 ~25%) - 如果可以接受较大的误差 (~90%),则使用较低的精度 (
dtype=np.complex64
) - 使用广播而不是 meshgrid 创建 z 平面(效果可以忽略不计,但通常是个好主意)。
def iterstep(z):
return 0.75*z + 0.25 / z**3
def newton_raphson(Re, Im, max_iter):
z = Re + 1j * Im[:, np.newaxis]
itercount = np.zeros_like(z, dtype=np.int32)
mask = np.ones_like(z, dtype=np.bool)
for i in range(max_iter):
z_old = z.copy()
z[mask] = iterstep(z[mask])
mask = (z != z_old)
itercount[mask] = i
return np.angle(z), itercount
axis = np.linspace(-1.5, 1.5, num=1000, dtype=np.complex64)
angle, itercount = newton_raphson(Re=axis, Im=axis, max_iter=20)