如何将计算值保存在 Tensorflow 图中(在 GPU 上)?
How to keep calculated values in a Tensorflow graph (on the GPU)?
我们如何确保计算出的值不会被复制回 CPU/python 内存,但仍可用于下一步的计算?
下面的代码显然不行:
import tensorflow as tf
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = result
with tf.Session() as s:
val = s.run([result,stored],{a:1.,b:2.})
print(val) # 3
val=s.run([result],{a:4.,b:5.})
print(val) # 9
print(stored.eval()) # 3 NOPE:
错误:尝试使用未初始化的值 _recv_b_0
答案是通过使用 :
将值存储到 tf.Variable
中
工作代码:
import tensorflow as tf
with tf.Session() as s:
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = tf.Variable(tf.constant(0.),name="stored_sum")
assign_op=stored.assign(result)
val,_ = s.run([result,assign_op],{a:1.,b:2.})
print(val) # 3
val=s.run(result,{a:4.,b:5.})
print(val[0]) # 9
print(stored.eval()) # ok, still 3
我们如何确保计算出的值不会被复制回 CPU/python 内存,但仍可用于下一步的计算?
下面的代码显然不行:
import tensorflow as tf
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = result
with tf.Session() as s:
val = s.run([result,stored],{a:1.,b:2.})
print(val) # 3
val=s.run([result],{a:4.,b:5.})
print(val) # 9
print(stored.eval()) # 3 NOPE:
错误:尝试使用未初始化的值 _recv_b_0
答案是通过使用
tf.Variable
中
工作代码:
import tensorflow as tf
with tf.Session() as s:
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = tf.Variable(tf.constant(0.),name="stored_sum")
assign_op=stored.assign(result)
val,_ = s.run([result,assign_op],{a:1.,b:2.})
print(val) # 3
val=s.run(result,{a:4.,b:5.})
print(val[0]) # 9
print(stored.eval()) # ok, still 3