寻找距离棋盘中心最远的着法 - python 2

Finding move that is furthest from center of board - python 2

我一直在研究骑士的巡回赛模拟,但我对如何将 Arnd Roth 修改应用到我的 python 程序感到困惑。这里的程序片段是计算的主体,它遍历棋盘,移动到移动次数最少的位置。我想改变的是,如果有多个位置的移动次数最少(即它们都有可能移动 2 次),我想通过测量它们的位置和中心之间的距离并选择一个来打破它们之间的平局离它最远。 我该怎么做?


    dx = [-2, -1, 1, 2, -2, -1, 1, 2]
dy = [1, 2, 2, 1, -1, -2, -2, -1]
# start the Knight from a random position
while tourTotal < tourMax:
    chessBoardX = chessX; chessBoardY = chessY # width and height of the chessboard
    chessBoard = [[0 for x in range(chessBoardX)] for y in range(chessBoardY)] # chessboard
# directions the Knight can move on the chessboard
    currentX = random.randint(0, chessBoardX - 1)
    currentY = random.randint(0, chessBoardY - 1)
    currentFailures = 0

    for k in range(chessBoardX * chessBoardY):
        chessBoard[currentY][currentX] = k + 1
        priorityQueue = [] # priority queue of available neighbors
        for i in range(8):
            newX = currentX + dx[i]; newY = currentY + dy[i]
            if newX >= 0 and newX < chessBoardX and newY >= 0 and newY < chessBoardY:
                if chessBoard[newY][newX] == 0:#if not visited
                    # count the available neighbors of the neighbor
                    counter = 0#counter is 0
                    for j in range(8):#max 8 moves
                        eX = newX + dx[j]; eY = newY + dy[j] #shows 1 move
                        if eX >= 0 and eX < chessBoardX and eY >= 0 and eY < chessBoardY:#if move is in parameters
                            if chessBoard[eY][eX] == 0: counter += 1 #if move is not visited, count is added
                    heappush(priorityQueue, (counter, i))#the amount of moves is pushed, along with the corresponding direction value
        # move to the neighbor that has min number of available neighbors
        if len(priorityQueue) > 0:
            (p, m) = heappop(priorityQueue)
            currentX += dx[m]; currentY += dy[m]
        else: break

位置 (x,y) 与 nx*ny 矩形板(基于 0 的索引)中心的 (Manhattan) 距离很简单abs((nx-1)/2 - x) + abs((ny-1)/2 - y).

如果你想要 Euclidean 距离,它会非常相似。