根据数据框中的向量生成值

Generate Values According to Vector in Data Frame

我有以下数据框 [数据框][1]

现在我想做的是根据向量 p 中的值(每个估计的 p 值)生成一个带有显着性代码的附加向量。有没有办法 R 可以根据来自其他向量的信息生成一个充满星星(作为重要性)的向量? 此外:有没有办法告诉 R,它应该根据新的观察顺序重新组织数据框(我想要以下顺序:vol_s、vol_s_avg、vol_s_med, vol_s_end, vol_l 等等)?

df 的结构

structure(list(id = c("vol_avg_cer", "vol_avg_cer",     "vol_avg_cer","vol_avg_cer", "vol_cer", "vol_cer"), type = c("partial", "partial", 
"full", "full", "partial", "partial"), parm = c("vol_s_avg", 
"vol_l_avg", "vol_s_avg", "vol_l_avg", "vol_s", "vol_l"), estimate =     c(-0.00419972506246416, 
-0.0199988264598171, -0.0429143892387528, 0.0367191277063419, 
-0.0180348542378266, -0.0825424096818213), stderr = c(0.00729095969265321, 
0.00950796168366169, 0.0296902477909246, 0.052772355386909,     0.0280972492739437, 
0.0458807583546288), p = c(0.564602918461653, 0.0354328407781613, 
0.148344569863659, 0.486552631437604, 0.520955910904793, 0.0720085952786877
)), .Names = c("id", "type", "parm", "estimate", "stderr", "p"
), row.names = c(1L, 2L, 20L, 21L, 1825L, 1826L), class = "data.frame")

您可以使用 symnum:

将数字转换为符号
library(dplyr)
mutate(df, signif = symnum(
  p, cutpoints = c(0, 0.01, 0.05, 0.10, 0.5, 1), 
  symbols = c("***", "**", "*", ".", " ")))

基于@user2802241 使用 dplyrsymnum 的回答,要对 parm 列进行排序,您可以将列的顺序定义为单独的向量,然后将 parm 列设置为一个因子,使用向量作为其级别,并在其上设置 arrange

例如

library(dplyr)

## define a vector with the variables in the order you require
factor_levels <- c("vol_s", "vol_s_avg", "vol_s_med","vol_s_end", "vol_l", "vol_l_avg", "vol_l_med", "vol_l_end")


## stay within dplyr - convert 'parm' to a factor and arrange on it
df <- df %>%
  mutate(signif = symnum(p, 
                         cutpoints = c(0, 0.01, 0.05, 0.10, 0.5, 1), 
                         symbols = c("***", "**", "*", ".", " ")),
         parm = factor(parm, levels = factor_levels)) %>%
  arrange(parm)

> df
           id    type      parm     estimate      stderr          p signif
1     vol_cer partial     vol_s -0.018034854 0.028097249 0.52095591       
2 vol_avg_cer partial vol_s_avg -0.004199725 0.007290960 0.56460292       
3 vol_avg_cer    full vol_s_avg -0.042914389 0.029690248 0.14834457      .
4     vol_cer partial     vol_l -0.082542410 0.045880758 0.07200860      *
5 vol_avg_cer partial vol_l_avg -0.019998826 0.009507962 0.03543284     **
6 vol_avg_cer    full vol_l_avg  0.036719128 0.052772355 0.48655263      .

如果您想将 parm 列保留为 character,您可以将其转换回来

df <- df %>%
  mutate(signif = symnum(p, 
                     cutpoints = c(0, 0.01, 0.05, 0.10, 0.5, 1), 
                     symbols = c("***", "**", "*", ".", " ")),
     parm = factor(parm, levels = factor_levels)) %>%
arrange(parm) %>%
mutate(parm = as.character(parm))