Diffie-Hellman(到 RC4)使用来自 Python 的 Wincrypt
Diffie-Hellman (to RC4) with Wincrypt From Python
我目前正在开发一个用 C++ 编写的项目,该项目利用 CryptoAPI 执行 Diffie-Hellman 密钥交换。我在使用它时遇到了一些麻烦,因为我得到的最终 RC4 session 密钥不能用于加密 Python 中的相同文本(使用 pycrypto)。
执行 Diffie-Hellman 密钥交换的 C++ 代码取自 msdn,但包含在此处以供后代使用:
#include <tchar.h>
#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")
// The key size, in bits.
#define DHKEYSIZE 512
// Prime in little-endian format.
static const BYTE g_rgbPrime[] =
{
0x91, 0x02, 0xc8, 0x31, 0xee, 0x36, 0x07, 0xec,
0xc2, 0x24, 0x37, 0xf8, 0xfb, 0x3d, 0x69, 0x49,
0xac, 0x7a, 0xab, 0x32, 0xac, 0xad, 0xe9, 0xc2,
0xaf, 0x0e, 0x21, 0xb7, 0xc5, 0x2f, 0x76, 0xd0,
0xe5, 0x82, 0x78, 0x0d, 0x4f, 0x32, 0xb8, 0xcb,
0xf7, 0x0c, 0x8d, 0xfb, 0x3a, 0xd8, 0xc0, 0xea,
0xcb, 0x69, 0x68, 0xb0, 0x9b, 0x75, 0x25, 0x3d,
0xaa, 0x76, 0x22, 0x49, 0x94, 0xa4, 0xf2, 0x8d
};
// Generator in little-endian format.
static BYTE g_rgbGenerator[] =
{
0x02, 0x88, 0xd7, 0xe6, 0x53, 0xaf, 0x72, 0xc5,
0x8c, 0x08, 0x4b, 0x46, 0x6f, 0x9f, 0x2e, 0xc4,
0x9c, 0x5c, 0x92, 0x21, 0x95, 0xb7, 0xe5, 0x58,
0xbf, 0xba, 0x24, 0xfa, 0xe5, 0x9d, 0xcb, 0x71,
0x2e, 0x2c, 0xce, 0x99, 0xf3, 0x10, 0xff, 0x3b,
0xcb, 0xef, 0x6c, 0x95, 0x22, 0x55, 0x9d, 0x29,
0x00, 0xb5, 0x4c, 0x5b, 0xa5, 0x63, 0x31, 0x41,
0x13, 0x0a, 0xea, 0x39, 0x78, 0x02, 0x6d, 0x62
};
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
int _tmain(int argc, _TCHAR* argv[])
{
UNREFERENCED_PARAMETER(argc);
UNREFERENCED_PARAMETER(argv);
BOOL fReturn;
HCRYPTPROV hProvParty1 = NULL;
HCRYPTPROV hProvParty2 = NULL;
DATA_BLOB P;
DATA_BLOB G;
HCRYPTKEY hPrivateKey1 = NULL;
HCRYPTKEY hPrivateKey2 = NULL;
PBYTE pbKeyBlob1 = NULL;
PBYTE pbKeyBlob2 = NULL;
HCRYPTKEY hSessionKey1 = NULL;
HCRYPTKEY hSessionKey2 = NULL;
PBYTE pbData = NULL;
/************************
Construct data BLOBs for the prime and generator. The P and G
values, represented by the g_rgbPrime and g_rgbGenerator arrays
respectively, are shared values that have been agreed to by both
parties.
************************/
P.cbData = DHKEYSIZE/8;
P.pbData = (BYTE*)(g_rgbPrime);
G.cbData = DHKEYSIZE/8;
G.pbData = (BYTE*)(g_rgbGenerator);
/************************
Create the private Diffie-Hellman key for party 1.
************************/
// Acquire a provider handle for party 1.
fReturn = CryptAcquireContext(
&hProvParty1,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 1.
fReturn = CryptGenKey(
hProvParty1,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey1);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Create the private Diffie-Hellman key for party 2.
************************/
// Acquire a provider handle for party 2.
fReturn = CryptAcquireContext(
&hProvParty2,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 2.
fReturn = CryptGenKey(
hProvParty2,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey2);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 1's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen1;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob1 = (PBYTE)malloc(dwDataLen1)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob1,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 2's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen2;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob2 = (PBYTE)malloc(dwDataLen2)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob2,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 1 imports party 2's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty1,
pbKeyBlob2,
dwDataLen2,
hPrivateKey1,
0,
&hSessionKey2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 2 imports party 1's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty2,
pbKeyBlob1,
dwDataLen1,
hPrivateKey2,
0,
&hSessionKey1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Convert the agreed keys to symmetric keys. They are currently of
the form CALG_AGREEDKEY_ANY. Convert them to CALG_RC4.
************************/
ALG_ID Algid = CALG_RC4;
// Enable the party 1 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey1,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Enable the party 2 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey2,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Encrypt some data with party 1's session key.
************************/
// Get the size.
DWORD dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
NULL,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
// Allocate a buffer to hold the encrypted data.
pbData = (PBYTE)malloc(dwLength);
if(!pbData)
{
goto ErrorExit;
}
// Copy the unencrypted data to the buffer. The data will be
// encrypted in place.
memcpy(pbData, g_rgbData, sizeof(g_rgbData));
// Encrypt the data.
dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
pbData,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
/************************
Decrypt the data with party 2's session key.
************************/
dwLength = sizeof(g_rgbData);
fReturn = CryptDecrypt(
hSessionKey2,
0,
TRUE,
0,
pbData,
&dwLength);
if(!fReturn)
{
goto ErrorExit;
}
ErrorExit:
if(pbData)
{
free(pbData);
pbData = NULL;
}
if(hSessionKey2)
{
CryptDestroyKey(hSessionKey2);
hSessionKey2 = NULL;
}
if(hSessionKey1)
{
CryptDestroyKey(hSessionKey1);
hSessionKey1 = NULL;
}
if(pbKeyBlob2)
{
free(pbKeyBlob2);
pbKeyBlob2 = NULL;
}
if(pbKeyBlob1)
{
free(pbKeyBlob1);
pbKeyBlob1 = NULL;
}
if(hPrivateKey2)
{
CryptDestroyKey(hPrivateKey2);
hPrivateKey2 = NULL;
}
if(hPrivateKey1)
{
CryptDestroyKey(hPrivateKey1);
hPrivateKey1 = NULL;
}
if(hProvParty2)
{
CryptReleaseContext(hProvParty2, 0);
hProvParty2 = NULL;
}
if(hProvParty1)
{
CryptReleaseContext(hProvParty1, 0);
hProvParty1 = NULL;
}
return 0;
}
我相信我可以在 Python 中完成 Diffie-Hellman 密钥交换,因为我可以生成相同的 public 和私钥而不会出错。我的 Diffie-Hellman 密钥交换基于 this repository.
我无法对此进行测试,但是因为我似乎无法从 C++ 代码中导出共享机密(类似于 this thread,从未得到令人满意的回答)。但是,我可以使用以下代码获取 RC4 session 密钥:
// Get the key length
DWORD keylen;
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
NULL,
&keylen);
// Get the session key
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
encKey,
&keylen);
这个函数的输出让我:
08 02 00 00 01 68 00 00 10 00 00 00 75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
我知道上面有一个 12 字节的 header+ 长度,所以我得到以下 16 字节的 RC4 session 密钥:
75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
所以我目前正在尝试验证我可以使用从 CryptExportKey
获得的 RC4 加密相同的明文。我目前正在尝试从上面的 C++ 代码加密 g_rgbData
,它设置为:
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
使用 C++ 代码,我得到以下加密输出:
cc 94 aa ec 86 6e a8 26
使用 pycrypto 我有以下代码:
from Crypto.Cipher import ARC4
key = '75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b'
key = key.replace(' ', '').decode('hex')
plaintext = '0102030405060708'
plaintext = plaintext.replace(' ', '').decode('hex')
rc4 = ARC4.new(key)
encrypted = rc4.encrypt(plaintext)
print encrypted.encode('hex')
这导致以下输出:
00 5b 64 25 4e a5 62 e3
这与 C++ 输出不匹配。我玩过字节序,但我怀疑可能会发生其他事情。
对不起,如果这是长篇大论,但它让我想到了我的两个问题:
每当您从共享密钥转换到 RC4(使用 CryptSetKeyParam
和 CALG_RC4
)时,这里的幕后实际发生了什么?我似乎无法在任何地方找到有关此过程的任何信息,因此我可以在 Python.
中实施它
知道为什么我的 RC4 无法在 Python 中使用相同的密钥和相同的明文吗?
如有任何帮助,我们将不胜感激!
根据 PyCrypto docs 您的密钥必须至少为 40 个字节:
key (byte string) - The secret key to use in the symmetric cipher. It can have any length, with a minimum of 40 bytes. Its cryptograpic strength is always capped to 2048 bits (256 bytes).
但是刚才上面有矛盾:
key_size = xrange(1, 257)
Size of a key (in bytes)
允许密钥长度为 1-256,所以我不确定这是否有帮助。
终于有时间查看你的代码了。当我在本地 运行 你的代码时,我可以导出会话密钥并可以在 pycrypto 中成功使用它。我的猜测是您没有正确导出会话密钥(例如,您发布的是什么 运行ning?)或者您在 C++ 中加密的数据与您在 [=] 中加密的数据不同13=] - 仔细检查您正在加密的数据是否也正确。我怀疑可能是后者,因为你发布的 CryptExportKey
真的没有什么可以搞砸的。
我目前正在开发一个用 C++ 编写的项目,该项目利用 CryptoAPI 执行 Diffie-Hellman 密钥交换。我在使用它时遇到了一些麻烦,因为我得到的最终 RC4 session 密钥不能用于加密 Python 中的相同文本(使用 pycrypto)。
执行 Diffie-Hellman 密钥交换的 C++ 代码取自 msdn,但包含在此处以供后代使用:
#include <tchar.h>
#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")
// The key size, in bits.
#define DHKEYSIZE 512
// Prime in little-endian format.
static const BYTE g_rgbPrime[] =
{
0x91, 0x02, 0xc8, 0x31, 0xee, 0x36, 0x07, 0xec,
0xc2, 0x24, 0x37, 0xf8, 0xfb, 0x3d, 0x69, 0x49,
0xac, 0x7a, 0xab, 0x32, 0xac, 0xad, 0xe9, 0xc2,
0xaf, 0x0e, 0x21, 0xb7, 0xc5, 0x2f, 0x76, 0xd0,
0xe5, 0x82, 0x78, 0x0d, 0x4f, 0x32, 0xb8, 0xcb,
0xf7, 0x0c, 0x8d, 0xfb, 0x3a, 0xd8, 0xc0, 0xea,
0xcb, 0x69, 0x68, 0xb0, 0x9b, 0x75, 0x25, 0x3d,
0xaa, 0x76, 0x22, 0x49, 0x94, 0xa4, 0xf2, 0x8d
};
// Generator in little-endian format.
static BYTE g_rgbGenerator[] =
{
0x02, 0x88, 0xd7, 0xe6, 0x53, 0xaf, 0x72, 0xc5,
0x8c, 0x08, 0x4b, 0x46, 0x6f, 0x9f, 0x2e, 0xc4,
0x9c, 0x5c, 0x92, 0x21, 0x95, 0xb7, 0xe5, 0x58,
0xbf, 0xba, 0x24, 0xfa, 0xe5, 0x9d, 0xcb, 0x71,
0x2e, 0x2c, 0xce, 0x99, 0xf3, 0x10, 0xff, 0x3b,
0xcb, 0xef, 0x6c, 0x95, 0x22, 0x55, 0x9d, 0x29,
0x00, 0xb5, 0x4c, 0x5b, 0xa5, 0x63, 0x31, 0x41,
0x13, 0x0a, 0xea, 0x39, 0x78, 0x02, 0x6d, 0x62
};
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
int _tmain(int argc, _TCHAR* argv[])
{
UNREFERENCED_PARAMETER(argc);
UNREFERENCED_PARAMETER(argv);
BOOL fReturn;
HCRYPTPROV hProvParty1 = NULL;
HCRYPTPROV hProvParty2 = NULL;
DATA_BLOB P;
DATA_BLOB G;
HCRYPTKEY hPrivateKey1 = NULL;
HCRYPTKEY hPrivateKey2 = NULL;
PBYTE pbKeyBlob1 = NULL;
PBYTE pbKeyBlob2 = NULL;
HCRYPTKEY hSessionKey1 = NULL;
HCRYPTKEY hSessionKey2 = NULL;
PBYTE pbData = NULL;
/************************
Construct data BLOBs for the prime and generator. The P and G
values, represented by the g_rgbPrime and g_rgbGenerator arrays
respectively, are shared values that have been agreed to by both
parties.
************************/
P.cbData = DHKEYSIZE/8;
P.pbData = (BYTE*)(g_rgbPrime);
G.cbData = DHKEYSIZE/8;
G.pbData = (BYTE*)(g_rgbGenerator);
/************************
Create the private Diffie-Hellman key for party 1.
************************/
// Acquire a provider handle for party 1.
fReturn = CryptAcquireContext(
&hProvParty1,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 1.
fReturn = CryptGenKey(
hProvParty1,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey1);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 1's private key.
fReturn = CryptSetKeyParam(
hPrivateKey1,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Create the private Diffie-Hellman key for party 2.
************************/
// Acquire a provider handle for party 2.
fReturn = CryptAcquireContext(
&hProvParty2,
NULL,
MS_ENH_DSS_DH_PROV,
PROV_DSS_DH,
CRYPT_VERIFYCONTEXT);
if(!fReturn)
{
goto ErrorExit;
}
// Create an ephemeral private key for party 2.
fReturn = CryptGenKey(
hProvParty2,
CALG_DH_EPHEM,
DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
&hPrivateKey2);
if(!fReturn)
{
goto ErrorExit;
}
// Set the prime for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_P,
(PBYTE)&P,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Set the generator for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_G,
(PBYTE)&G,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Generate the secret values for party 2's private key.
fReturn = CryptSetKeyParam(
hPrivateKey2,
KP_X,
NULL,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 1's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen1;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob1 = (PBYTE)malloc(dwDataLen1)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey1,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob1,
&dwDataLen1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Export Party 2's public key.
************************/
// Public key value, (G^X) mod P is calculated.
DWORD dwDataLen2;
// Get the size for the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
NULL,
PUBLICKEYBLOB,
0,
NULL,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
// Allocate the memory for the key BLOB.
if(!(pbKeyBlob2 = (PBYTE)malloc(dwDataLen2)))
{
goto ErrorExit;
}
// Get the key BLOB.
fReturn = CryptExportKey(
hPrivateKey2,
0,
PUBLICKEYBLOB,
0,
pbKeyBlob2,
&dwDataLen2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 1 imports party 2's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty1,
pbKeyBlob2,
dwDataLen2,
hPrivateKey1,
0,
&hSessionKey2);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Party 2 imports party 1's public key.
The imported key will contain the new shared secret
key (Y^X) mod P.
************************/
fReturn = CryptImportKey(
hProvParty2,
pbKeyBlob1,
dwDataLen1,
hPrivateKey2,
0,
&hSessionKey1);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Convert the agreed keys to symmetric keys. They are currently of
the form CALG_AGREEDKEY_ANY. Convert them to CALG_RC4.
************************/
ALG_ID Algid = CALG_RC4;
// Enable the party 1 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey1,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
// Enable the party 2 public session key for use by setting the
// ALGID.
fReturn = CryptSetKeyParam(
hSessionKey2,
KP_ALGID,
(PBYTE)&Algid,
0);
if(!fReturn)
{
goto ErrorExit;
}
/************************
Encrypt some data with party 1's session key.
************************/
// Get the size.
DWORD dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
NULL,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
// Allocate a buffer to hold the encrypted data.
pbData = (PBYTE)malloc(dwLength);
if(!pbData)
{
goto ErrorExit;
}
// Copy the unencrypted data to the buffer. The data will be
// encrypted in place.
memcpy(pbData, g_rgbData, sizeof(g_rgbData));
// Encrypt the data.
dwLength = sizeof(g_rgbData);
fReturn = CryptEncrypt(
hSessionKey1,
0,
TRUE,
0,
pbData,
&dwLength,
sizeof(g_rgbData));
if(!fReturn)
{
goto ErrorExit;
}
/************************
Decrypt the data with party 2's session key.
************************/
dwLength = sizeof(g_rgbData);
fReturn = CryptDecrypt(
hSessionKey2,
0,
TRUE,
0,
pbData,
&dwLength);
if(!fReturn)
{
goto ErrorExit;
}
ErrorExit:
if(pbData)
{
free(pbData);
pbData = NULL;
}
if(hSessionKey2)
{
CryptDestroyKey(hSessionKey2);
hSessionKey2 = NULL;
}
if(hSessionKey1)
{
CryptDestroyKey(hSessionKey1);
hSessionKey1 = NULL;
}
if(pbKeyBlob2)
{
free(pbKeyBlob2);
pbKeyBlob2 = NULL;
}
if(pbKeyBlob1)
{
free(pbKeyBlob1);
pbKeyBlob1 = NULL;
}
if(hPrivateKey2)
{
CryptDestroyKey(hPrivateKey2);
hPrivateKey2 = NULL;
}
if(hPrivateKey1)
{
CryptDestroyKey(hPrivateKey1);
hPrivateKey1 = NULL;
}
if(hProvParty2)
{
CryptReleaseContext(hProvParty2, 0);
hProvParty2 = NULL;
}
if(hProvParty1)
{
CryptReleaseContext(hProvParty1, 0);
hProvParty1 = NULL;
}
return 0;
}
我相信我可以在 Python 中完成 Diffie-Hellman 密钥交换,因为我可以生成相同的 public 和私钥而不会出错。我的 Diffie-Hellman 密钥交换基于 this repository.
我无法对此进行测试,但是因为我似乎无法从 C++ 代码中导出共享机密(类似于 this thread,从未得到令人满意的回答)。但是,我可以使用以下代码获取 RC4 session 密钥:
// Get the key length
DWORD keylen;
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
NULL,
&keylen);
// Get the session key
CryptExportKey(
hSessionKey1,
NULL,
PLAINTEXTKEYBLOB,
0,
encKey,
&keylen);
这个函数的输出让我:
08 02 00 00 01 68 00 00 10 00 00 00 75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
我知道上面有一个 12 字节的 header+ 长度,所以我得到以下 16 字节的 RC4 session 密钥:
75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b
所以我目前正在尝试验证我可以使用从 CryptExportKey
获得的 RC4 加密相同的明文。我目前正在尝试从上面的 C++ 代码加密 g_rgbData
,它设置为:
BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
使用 C++ 代码,我得到以下加密输出:
cc 94 aa ec 86 6e a8 26
使用 pycrypto 我有以下代码:
from Crypto.Cipher import ARC4
key = '75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b'
key = key.replace(' ', '').decode('hex')
plaintext = '0102030405060708'
plaintext = plaintext.replace(' ', '').decode('hex')
rc4 = ARC4.new(key)
encrypted = rc4.encrypt(plaintext)
print encrypted.encode('hex')
这导致以下输出:
00 5b 64 25 4e a5 62 e3
这与 C++ 输出不匹配。我玩过字节序,但我怀疑可能会发生其他事情。
对不起,如果这是长篇大论,但它让我想到了我的两个问题:
每当您从共享密钥转换到 RC4(使用
CryptSetKeyParam
和CALG_RC4
)时,这里的幕后实际发生了什么?我似乎无法在任何地方找到有关此过程的任何信息,因此我可以在 Python. 中实施它
知道为什么我的 RC4 无法在 Python 中使用相同的密钥和相同的明文吗?
如有任何帮助,我们将不胜感激!
根据 PyCrypto docs 您的密钥必须至少为 40 个字节:
key (byte string) - The secret key to use in the symmetric cipher. It can have any length, with a minimum of 40 bytes. Its cryptograpic strength is always capped to 2048 bits (256 bytes).
但是刚才上面有矛盾:
key_size = xrange(1, 257)
Size of a key (in bytes)
允许密钥长度为 1-256,所以我不确定这是否有帮助。
终于有时间查看你的代码了。当我在本地 运行 你的代码时,我可以导出会话密钥并可以在 pycrypto 中成功使用它。我的猜测是您没有正确导出会话密钥(例如,您发布的是什么 运行ning?)或者您在 C++ 中加密的数据与您在 [=] 中加密的数据不同13=] - 仔细检查您正在加密的数据是否也正确。我怀疑可能是后者,因为你发布的 CryptExportKey
真的没有什么可以搞砸的。