如何使用 hmmlearn 运行 Python 中的隐藏马尔可夫模型?

how to run hidden markov models in Python with hmmlearn?

我尝试使用 hmmlearn from GitHub 到 运行 二进制隐马尔可夫模型。这不起作用:

import hmmlearn.hmm as hmm
transmat = np.array([[0.7, 0.3],
                      [0.3, 0.7]])
emitmat = np.array([[0.9, 0.1],
                    [0.2, 0.8]])
obs = np.array([0, 0, 1, 0, 0])
startprob = np.array([0.5, 0.5])
h = hmm.MultinomialHMM(n_components=2, startprob=startprob,
                       transmat=transmat)
h.emissionprob_ = emitmat
# fails
h.fit([0, 0, 1, 0, 0])
# fails
h.decode([0, 0, 1, 0, 0])
print h

我收到此错误:

ValueError: zero-dimensional arrays cannot be concatenated

该模块的正确使用方法是什么?请注意,我使用的是与 sklearn 分离的 hmmlearn 版本,因为显然 sklearn 不再维护 hmmlearn。

Fit 接受 序列列表 而不是单个序列(因为通常您可以从 experiments/observations 的不同运行中观察到多个独立序列)。因此只需将您的列表放入另一个列表

import hmmlearn.hmm as hmm
import numpy as np

transmat = np.array([[0.7, 0.3],
                      [0.3, 0.7]])
emitmat = np.array([[0.9, 0.1],
                    [0.2, 0.8]])

startprob = np.array([0.5, 0.5])
h = hmm.MultinomialHMM(n_components=2, startprob=startprob,
                       transmat=transmat)
h.emissionprob_ = emitmat
# works fine
h.fit([[0, 0, 1, 0, 0]]) 
# h.fit([[0, 0, 1, 0, 0], [0, 0], [1,1,1]]) # this is the reason for such 
                                            # syntax, you can fit to multiple
                                            # sequences    
print h.decode([0, 0, 1, 0, 0])
print h

给予

(-4.125363362578882, array([1, 1, 1, 1, 1]))
MultinomialHMM(algorithm='viterbi',
        init_params='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
        n_components=2, n_iter=10,
        params='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
        random_state=<mtrand.RandomState object at 0x7fe245ac7510>,
        startprob=None, startprob_prior=1.0, thresh=0.01, transmat=None,
        transmat_prior=1.0)