如何通过节点或叶子中的标签折叠系统发育树中的分支?
How to collapse branches in a phylogenetic tree by the label in their nodes or leaves?
我为一个蛋白质家族构建了一个系统发育树,它可以分为不同的组,根据受体类型或反应类型对每个组进行分类。树中的节点被标记为受体的类型。
在系统发育树中,我可以看到属于同一组或受体类型的蛋白质聚集在同一分支中。所以我想折叠这些具有共同标签的分支,按给定的关键字列表对它们进行分组。
命令应该是这样的:
./collapse_tree_by_label -f phylogenetic_tree.newick -l list_of_labels_to_collapse.txt -o collapsed_tree.eps(或pdf)
我的 list_of_labels_to_collapse.txt 会是这样的:
一种
乙
C
D
我的纽威克树应该是这样的:
(A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2)
没有折叠的输出图像是这样的:
http://i.stack.imgur.com/pHkoQ.png
输出图像折叠应该是这样的(collapsed_tree.eps):
http://i.stack.imgur.com/TLXd0.png
三角形的宽代表分支的长度,三角形的高代表分支的节点数
我一直在玩 R 中的 "ape" 包。我能够绘制系统发育树,但我仍然无法弄清楚如何通过标签中的关键字折叠分支:
require("ape")
这将加载树:
cat("((A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")
这里应该是折叠的代码
这将绘制树:
plot(tree.test)
您存储在 R 中的树已经将提示存储为多项式。这只是用代表多项式的三角形绘制树的问题。
据我所知,ape
中没有执行此操作的功能,但如果您稍微弄乱绘图功能,您可以将其关闭
# Step 1: make edges for descendent nodes invisible in plot:
groups <- c("A", "B", "C", "D")
group_edges <- numeric(0)
for(group in groups){
group_edges <- c(group_edges,getMRCA(tree.test,tree.test$tip.label[grepl(group, tree.test$tip.label)]))
}
edge.width <- rep(1, nrow(tree.test$edge))
edge.width[tree.test$edge[,1] %in% group_edges ] <- 0
# Step 2: plot the tree with the hidden edges
plot(tree.test, show.tip.label = F, edge.width = edge.width)
# Step 3: add triangles
add_polytomy_triangle <- function(phy, group){
root <- length(phy$tip.label)+1
group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
group_nodes <- which(phy$tip.label %in% group_node_labels)
group_mrca <- getMRCA(phy,group_nodes)
tip_coord1 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[1])
tip_coord2 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[length(group_nodes)])
node_coord <- c(dist.nodes(phy)[root, group_mrca], mean(c(tip_coord1[2], tip_coord2[2])))
xcoords <- c(tip_coord1[1], tip_coord2[1], node_coord[1])
ycoords <- c(tip_coord1[2], tip_coord2[2], node_coord[2])
polygon(xcoords, ycoords)
}
然后你只需要遍历组来添加三角形
for(group in groups){
add_polytomy_triangle(tree.test, group)
}
我认为脚本终于达到了我的要求。
根据@CactusWoman 提供的答案,我稍微更改了代码,以便脚本将尝试找到代表与我的搜索模式匹配的最大分支的 MRCA。这解决了不合并非多分支的问题,或者因为一个匹配节点错误地位于正确分支之外而导致整棵树崩溃的问题。
此外,我包含了一个参数,表示给定分支中模式丰度比的限制,因此我们可以 select 和 collapse/group 分支至少有 90% 的提示例如,匹配搜索模式。
library(geiger)
library(phylobase)
library(ape)
#functions
find_best_mrca <- function(phy, group, threshold){
group_matches <- phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)]
group_mrca <- getMRCA(phy,phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)])
group_leaves <- tips(phy, group_mrca)
match_ratio <- length(group_matches)/length(group_leaves)
if( match_ratio < threshold){
#start searching for children nodes that have more than 95% of descendants matching to the search pattern
mrca_children <- descendants(as(phy,"phylo4"), group_mrca, type="all")
i <- 1
new_ratios <- NULL
nleaves <- NULL
names(mrca_children) <- NULL
for(new_mrca in mrca_children){
child_leaves <- tips(tree.test, new_mrca)
child_matches <- grep(group, child_leaves, ignore.case=TRUE)
new_ratios[i] <- length(child_matches)/length(child_leaves)
nleaves[i] <- length(tips(phy, new_mrca))
i <- i+1
}
match_result <- data.frame(mrca_children, new_ratios, nleaves)
match_result_sorted <- match_result[order(-match_result$nleaves,match_result$new_ratios),]
found <- numeric(0);
print(match_result_sorted)
for(line in 1:nrow(match_result_sorted)){
if(match_result_sorted$ new_ratios[line]>=threshold){
return(match_result_sorted$mrca_children[line])
found <- 1
}
}
if(found==0){return(found)}
}else{return(group_mrca)}
}
add_triangle <- function(phy, group,phylo_plot){
group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
group_mrca <- getMRCA(phy,group_node_labels)
group_nodes <- descendants(as(tree.test,"phylo4"), group_mrca, type="tips")
names(group_nodes) <- NULL
x<-phylo_plot$xx
y<-phylo_plot$yy
x1 <- max(x[group_nodes])
x2 <-max(x[group_nodes])
x3 <- x[group_mrca]
y1 <- min(y[group_nodes])
y2 <- max(y[group_nodes])
y3 <- y[group_mrca]
xcoords <- c(x1,x2,x3)
ycoords <- c(y1,y2,y3)
polygon(xcoords, ycoords)
return(c(x2,y3))
}
#main
cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")
# Step 1: Find the best MRCA that matches to the keywords or search patten
groups <- c("A", "B|C", "D")
group_labels <- groups
group_edges <- numeric(0)
edge.width <- rep(1, nrow(tree.test$edge))
count <- 1
for(group in groups){
best_mrca <- find_best_mrca(tree.test, group, 0.90)
group_leaves <- tips(tree.test, best_mrca)
groups[count] <- paste(group_leaves, collapse="|")
group_edges <- c(group_edges,best_mrca)
#Step2: Remove the edges of the branches that will be collapsed, so they become invisible
edge.width[tree.test$edge[,1] %in% c(group_edges[count],descendants(as(tree.test,"phylo4"), group_edges[count], type="all")) ] <- 0
count = count +1
}
#Step 3: plot the tree hiding the branches that will be collapsed/grouped
last_plot.phylo <- plot(tree.test, show.tip.label = F, edge.width = edge.width)
#And save a copy of the plot so we can extract the xy coordinates of the nodes
#To get the x & y coordinates of a plotted tree created using plot.phylo
#or plotTree, we can steal from inside tiplabels:
last_phylo_plot<-get("last_plot.phylo",envir=.PlotPhyloEnv)
#Step 4: Add triangles and labels to the collapsed nodes
for(i in 1:length(groups)){
text_coords <- add_triangle(tree.test, groups[i],last_phylo_plot)
text(text_coords[1],text_coords[2],labels=group_labels[i], pos=4)
}
我也一直在寻找这种工具,与其说是为了折叠分类组,不如说是为了根据数值支持值折叠内部节点。
ape 包中的di2multi 函数可以将节点折叠成多边形,但目前只能通过分支长度阈值来实现。
这是一个粗略的改编,允许通过节点支持值阈值(默认阈值 = 0.5)折叠。
使用风险自负,但它适用于我的有根贝叶斯树。
di2multi4node <- function (phy, tol = 0.5)
# Adapted di2multi function from the ape package to plot polytomies
# based on numeric node support values
# (di2multi does this based on edge lengths)
# Needs adjustment for unrooted trees as currently skips the first edge
{
if (is.null(phy$edge.length))
stop("the tree has no branch length")
if (is.na(as.numeric(phy$node.label[2])))
stop("node labels can't be converted to numeric values")
if (is.null(phy$node.label))
stop("the tree has no node labels")
ind <- which(phy$edge[, 2] > length(phy$tip.label))[as.numeric(phy$node.label[2:length(phy$node.label)]) < tol]
n <- length(ind)
if (!n)
return(phy)
foo <- function(ancestor, des2del) {
wh <- which(phy$edge[, 1] == des2del)
for (k in wh) {
if (phy$edge[k, 2] %in% node2del)
foo(ancestor, phy$edge[k, 2])
else phy$edge[k, 1] <<- ancestor
}
}
node2del <- phy$edge[ind, 2]
anc <- phy$edge[ind, 1]
for (i in 1:n) {
if (anc[i] %in% node2del)
next
foo(anc[i], node2del[i])
}
phy$edge <- phy$edge[-ind, ]
phy$edge.length <- phy$edge.length[-ind]
phy$Nnode <- phy$Nnode - n
sel <- phy$edge > min(node2del)
for (i in which(sel)) phy$edge[i] <- phy$edge[i] - sum(node2del <
phy$edge[i])
if (!is.null(phy$node.label))
phy$node.label <- phy$node.label[-(node2del - length(phy$tip.label))]
phy
}
这是我基于phytools::phylo.toBackbone
函数的回答,
参见 http://blog.phytools.org/2013/09/even-more-on-plotting-subtrees-as.html, and http://blog.phytools.org/2013/10/finding-edge-lengths-of-all-terminal.html。首先,加载代码末尾的函数。
library(ape)
library(phytools) #phylo.toBackbone
library(phangorn)
cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);"
, file = "ex.tre", sep = "\n")
phy <- read.tree("ex.tre")
groups <- c("A", "B|C", "D")
backboneoftree<-makebackbone(groups,phy)
# tip.label clade.label N depth
# 1 A_1 A 10 0.2481818
# 2 B_1 B|C 6 0.9400000
# 3 D_1 D 5 0.4600000
{
tryCatch(dev.off(),error=function(e){""})
par(fig=c(0,0.5,0,1), mar = c(0, 0, 2, 0))
plot(phy, main="Original" )
par(fig=c(0.5,1,0,1), oma = c(0, 0, 1.2, 0), xpd=NA, new=T)
plot(backboneoftree)
title(main="Clades")
}
makebackbone <- function(groupings,phy){
listofspecies <- phy$tip.label
listtopreserve <- character()
newedgelengths <- meandistnode<- lengthofclades<- numeric()
for (i in 1:length(groupings)){
bestmrca<-getMRCA(phy,grep(groupings[i], phy$tip.label) )
mrcatips<-phy$tip.label[unlist(phangorn::Descendants(phy,bestmrca, type="tips") )]
listtopreserve[i] <- mrcatips[1]
meandistnode[i] <- mean(dist.nodes(phy)[unlist(lapply(mrcatips,
function(x) grep(x, phy$tip.label) ) ),bestmrca] )
lengthofclades[i] <- length(mrcatips)
provtree <- drop.tip(phy,mrcatips, trim.internal=F, subtree = T)
n3 <- length(provtree$tip.label)
newedgelengths[i] <- setNames(provtree$edge.length[sapply(1:n3,function(x,y)
which(y==x),
y=provtree$edge[,2])],
provtree$tip.label)[provtree$tip.label[grep("tips",provtree$tip.label)] ]
}
newtree <- drop.tip(phy,setdiff(listofspecies,listtopreserve),
trim.internal = T)
n <- length(newtree$tip.label)
newtree$edge.length[sapply(1:n,function(x,y)
which(y==x),
y=newtree$edge[,2])] <- newedgelengths + meandistnode
trans <- data.frame(tip.label=newtree$tip.label,clade.label=groupings,
N=lengthofclades, depth=meandistnode )
rownames(trans) <- NULL
print(trans)
backboneoftree <- phytools::phylo.toBackbone(newtree,trans)
return(backboneoftree)
}
编辑:我没试过这个,但这可能是另一个答案:“转换树尖分支的脚本和函数,即厚度或三角形,两者的宽度都与某些参数相关(例如,进化枝的物种编号)(tip.branches.R)"
https://www.en.sysbot.bio.lmu.de/people/employees/cusimano/use_r/index.html
我为一个蛋白质家族构建了一个系统发育树,它可以分为不同的组,根据受体类型或反应类型对每个组进行分类。树中的节点被标记为受体的类型。
在系统发育树中,我可以看到属于同一组或受体类型的蛋白质聚集在同一分支中。所以我想折叠这些具有共同标签的分支,按给定的关键字列表对它们进行分组。
命令应该是这样的:
./collapse_tree_by_label -f phylogenetic_tree.newick -l list_of_labels_to_collapse.txt -o collapsed_tree.eps(或pdf)
我的 list_of_labels_to_collapse.txt 会是这样的: 一种 乙 C D
我的纽威克树应该是这样的: (A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2)
没有折叠的输出图像是这样的: http://i.stack.imgur.com/pHkoQ.png
输出图像折叠应该是这样的(collapsed_tree.eps): http://i.stack.imgur.com/TLXd0.png
三角形的宽代表分支的长度,三角形的高代表分支的节点数
我一直在玩 R 中的 "ape" 包。我能够绘制系统发育树,但我仍然无法弄清楚如何通过标签中的关键字折叠分支:
require("ape")
这将加载树:
cat("((A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")
这里应该是折叠的代码
这将绘制树:
plot(tree.test)
您存储在 R 中的树已经将提示存储为多项式。这只是用代表多项式的三角形绘制树的问题。
据我所知,ape
中没有执行此操作的功能,但如果您稍微弄乱绘图功能,您可以将其关闭
# Step 1: make edges for descendent nodes invisible in plot:
groups <- c("A", "B", "C", "D")
group_edges <- numeric(0)
for(group in groups){
group_edges <- c(group_edges,getMRCA(tree.test,tree.test$tip.label[grepl(group, tree.test$tip.label)]))
}
edge.width <- rep(1, nrow(tree.test$edge))
edge.width[tree.test$edge[,1] %in% group_edges ] <- 0
# Step 2: plot the tree with the hidden edges
plot(tree.test, show.tip.label = F, edge.width = edge.width)
# Step 3: add triangles
add_polytomy_triangle <- function(phy, group){
root <- length(phy$tip.label)+1
group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
group_nodes <- which(phy$tip.label %in% group_node_labels)
group_mrca <- getMRCA(phy,group_nodes)
tip_coord1 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[1])
tip_coord2 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[length(group_nodes)])
node_coord <- c(dist.nodes(phy)[root, group_mrca], mean(c(tip_coord1[2], tip_coord2[2])))
xcoords <- c(tip_coord1[1], tip_coord2[1], node_coord[1])
ycoords <- c(tip_coord1[2], tip_coord2[2], node_coord[2])
polygon(xcoords, ycoords)
}
然后你只需要遍历组来添加三角形
for(group in groups){
add_polytomy_triangle(tree.test, group)
}
我认为脚本终于达到了我的要求。 根据@CactusWoman 提供的答案,我稍微更改了代码,以便脚本将尝试找到代表与我的搜索模式匹配的最大分支的 MRCA。这解决了不合并非多分支的问题,或者因为一个匹配节点错误地位于正确分支之外而导致整棵树崩溃的问题。
此外,我包含了一个参数,表示给定分支中模式丰度比的限制,因此我们可以 select 和 collapse/group 分支至少有 90% 的提示例如,匹配搜索模式。
library(geiger)
library(phylobase)
library(ape)
#functions
find_best_mrca <- function(phy, group, threshold){
group_matches <- phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)]
group_mrca <- getMRCA(phy,phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)])
group_leaves <- tips(phy, group_mrca)
match_ratio <- length(group_matches)/length(group_leaves)
if( match_ratio < threshold){
#start searching for children nodes that have more than 95% of descendants matching to the search pattern
mrca_children <- descendants(as(phy,"phylo4"), group_mrca, type="all")
i <- 1
new_ratios <- NULL
nleaves <- NULL
names(mrca_children) <- NULL
for(new_mrca in mrca_children){
child_leaves <- tips(tree.test, new_mrca)
child_matches <- grep(group, child_leaves, ignore.case=TRUE)
new_ratios[i] <- length(child_matches)/length(child_leaves)
nleaves[i] <- length(tips(phy, new_mrca))
i <- i+1
}
match_result <- data.frame(mrca_children, new_ratios, nleaves)
match_result_sorted <- match_result[order(-match_result$nleaves,match_result$new_ratios),]
found <- numeric(0);
print(match_result_sorted)
for(line in 1:nrow(match_result_sorted)){
if(match_result_sorted$ new_ratios[line]>=threshold){
return(match_result_sorted$mrca_children[line])
found <- 1
}
}
if(found==0){return(found)}
}else{return(group_mrca)}
}
add_triangle <- function(phy, group,phylo_plot){
group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
group_mrca <- getMRCA(phy,group_node_labels)
group_nodes <- descendants(as(tree.test,"phylo4"), group_mrca, type="tips")
names(group_nodes) <- NULL
x<-phylo_plot$xx
y<-phylo_plot$yy
x1 <- max(x[group_nodes])
x2 <-max(x[group_nodes])
x3 <- x[group_mrca]
y1 <- min(y[group_nodes])
y2 <- max(y[group_nodes])
y3 <- y[group_mrca]
xcoords <- c(x1,x2,x3)
ycoords <- c(y1,y2,y3)
polygon(xcoords, ycoords)
return(c(x2,y3))
}
#main
cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")
# Step 1: Find the best MRCA that matches to the keywords or search patten
groups <- c("A", "B|C", "D")
group_labels <- groups
group_edges <- numeric(0)
edge.width <- rep(1, nrow(tree.test$edge))
count <- 1
for(group in groups){
best_mrca <- find_best_mrca(tree.test, group, 0.90)
group_leaves <- tips(tree.test, best_mrca)
groups[count] <- paste(group_leaves, collapse="|")
group_edges <- c(group_edges,best_mrca)
#Step2: Remove the edges of the branches that will be collapsed, so they become invisible
edge.width[tree.test$edge[,1] %in% c(group_edges[count],descendants(as(tree.test,"phylo4"), group_edges[count], type="all")) ] <- 0
count = count +1
}
#Step 3: plot the tree hiding the branches that will be collapsed/grouped
last_plot.phylo <- plot(tree.test, show.tip.label = F, edge.width = edge.width)
#And save a copy of the plot so we can extract the xy coordinates of the nodes
#To get the x & y coordinates of a plotted tree created using plot.phylo
#or plotTree, we can steal from inside tiplabels:
last_phylo_plot<-get("last_plot.phylo",envir=.PlotPhyloEnv)
#Step 4: Add triangles and labels to the collapsed nodes
for(i in 1:length(groups)){
text_coords <- add_triangle(tree.test, groups[i],last_phylo_plot)
text(text_coords[1],text_coords[2],labels=group_labels[i], pos=4)
}
我也一直在寻找这种工具,与其说是为了折叠分类组,不如说是为了根据数值支持值折叠内部节点。
ape 包中的di2multi 函数可以将节点折叠成多边形,但目前只能通过分支长度阈值来实现。 这是一个粗略的改编,允许通过节点支持值阈值(默认阈值 = 0.5)折叠。
使用风险自负,但它适用于我的有根贝叶斯树。
di2multi4node <- function (phy, tol = 0.5)
# Adapted di2multi function from the ape package to plot polytomies
# based on numeric node support values
# (di2multi does this based on edge lengths)
# Needs adjustment for unrooted trees as currently skips the first edge
{
if (is.null(phy$edge.length))
stop("the tree has no branch length")
if (is.na(as.numeric(phy$node.label[2])))
stop("node labels can't be converted to numeric values")
if (is.null(phy$node.label))
stop("the tree has no node labels")
ind <- which(phy$edge[, 2] > length(phy$tip.label))[as.numeric(phy$node.label[2:length(phy$node.label)]) < tol]
n <- length(ind)
if (!n)
return(phy)
foo <- function(ancestor, des2del) {
wh <- which(phy$edge[, 1] == des2del)
for (k in wh) {
if (phy$edge[k, 2] %in% node2del)
foo(ancestor, phy$edge[k, 2])
else phy$edge[k, 1] <<- ancestor
}
}
node2del <- phy$edge[ind, 2]
anc <- phy$edge[ind, 1]
for (i in 1:n) {
if (anc[i] %in% node2del)
next
foo(anc[i], node2del[i])
}
phy$edge <- phy$edge[-ind, ]
phy$edge.length <- phy$edge.length[-ind]
phy$Nnode <- phy$Nnode - n
sel <- phy$edge > min(node2del)
for (i in which(sel)) phy$edge[i] <- phy$edge[i] - sum(node2del <
phy$edge[i])
if (!is.null(phy$node.label))
phy$node.label <- phy$node.label[-(node2del - length(phy$tip.label))]
phy
}
这是我基于phytools::phylo.toBackbone
函数的回答,
参见 http://blog.phytools.org/2013/09/even-more-on-plotting-subtrees-as.html, and http://blog.phytools.org/2013/10/finding-edge-lengths-of-all-terminal.html。首先,加载代码末尾的函数。
library(ape)
library(phytools) #phylo.toBackbone
library(phangorn)
cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);"
, file = "ex.tre", sep = "\n")
phy <- read.tree("ex.tre")
groups <- c("A", "B|C", "D")
backboneoftree<-makebackbone(groups,phy)
# tip.label clade.label N depth
# 1 A_1 A 10 0.2481818
# 2 B_1 B|C 6 0.9400000
# 3 D_1 D 5 0.4600000
{
tryCatch(dev.off(),error=function(e){""})
par(fig=c(0,0.5,0,1), mar = c(0, 0, 2, 0))
plot(phy, main="Original" )
par(fig=c(0.5,1,0,1), oma = c(0, 0, 1.2, 0), xpd=NA, new=T)
plot(backboneoftree)
title(main="Clades")
}
makebackbone <- function(groupings,phy){
listofspecies <- phy$tip.label
listtopreserve <- character()
newedgelengths <- meandistnode<- lengthofclades<- numeric()
for (i in 1:length(groupings)){
bestmrca<-getMRCA(phy,grep(groupings[i], phy$tip.label) )
mrcatips<-phy$tip.label[unlist(phangorn::Descendants(phy,bestmrca, type="tips") )]
listtopreserve[i] <- mrcatips[1]
meandistnode[i] <- mean(dist.nodes(phy)[unlist(lapply(mrcatips,
function(x) grep(x, phy$tip.label) ) ),bestmrca] )
lengthofclades[i] <- length(mrcatips)
provtree <- drop.tip(phy,mrcatips, trim.internal=F, subtree = T)
n3 <- length(provtree$tip.label)
newedgelengths[i] <- setNames(provtree$edge.length[sapply(1:n3,function(x,y)
which(y==x),
y=provtree$edge[,2])],
provtree$tip.label)[provtree$tip.label[grep("tips",provtree$tip.label)] ]
}
newtree <- drop.tip(phy,setdiff(listofspecies,listtopreserve),
trim.internal = T)
n <- length(newtree$tip.label)
newtree$edge.length[sapply(1:n,function(x,y)
which(y==x),
y=newtree$edge[,2])] <- newedgelengths + meandistnode
trans <- data.frame(tip.label=newtree$tip.label,clade.label=groupings,
N=lengthofclades, depth=meandistnode )
rownames(trans) <- NULL
print(trans)
backboneoftree <- phytools::phylo.toBackbone(newtree,trans)
return(backboneoftree)
}
编辑:我没试过这个,但这可能是另一个答案:“转换树尖分支的脚本和函数,即厚度或三角形,两者的宽度都与某些参数相关(例如,进化枝的物种编号)(tip.branches.R)" https://www.en.sysbot.bio.lmu.de/people/employees/cusimano/use_r/index.html