如何优化 SQL 查询以检查表中列值的一致性

How to optimise a SQL query to check for consistency of column values across tables

我想检查多个 table 中每个 table 中是否存在相同的键/相同数量的键。

目前我已经创建了一个解决方案来检查每个 table 的键数,当所有 table 合并在一起时检查键数,然后进行比较。

这个解决方案有效,但我想知道是否有更优化的解决方案...

目前的示例解决方案:

SELECT COUNT(DISTINCT variable) AS num_ids FROM table_a;

SELECT COUNT(DISTINCT variable) AS num_ids FROM table_b;

SELECT COUNT(DISTINCT variable) AS num_ids FROM table_c;

SELECT COUNT(DISTINCT a.variable) AS num_ids
FROM (SELECT DISTINCT VARIABLE FROM table_a) a
  INNER JOIN (SELECT DISTINCT VARIABLE FROM table_b) b ON a.variable = b.variable
  INNER JOIN (SELECT DISTINCT VARIABLE FROM table_c) c ON a.variable = c.variable;

更新:

我在一个查询中面临的困难是 table 中的任何一个在我要检查的 VARIABLE 上可能不是唯一的,所以我不得不使用在合并之前区分以避免扩展连接

好吧,这可能是我可以为您构建的最糟糕的 SQL :) 我将永远否认我写了这篇文章并且我的 Whosebug 帐户被黑了 ;)

SELECT
  'All OK'
WHERE
  ( SELECT COUNT(DISTINCT id) FROM table_a ) = ( SELECT COUNT(DISTINCT id) FROM table_b )
  AND ( SELECT COUNT(DISTINCT id) FROM table_b ) = ( SELECT COUNT(DISTINCT id) FROM table_c )

顺便说一下,这不会优化查询 - 它仍在执行三个查询(但我猜它比 4 个好?)。

更新:根据您的以下用例:新 sql fiddle http://sqlfiddle.com/#!15/a0403/1

SELECT DISTINCT
  tbl_a.a_count,
  tbl_b.b_count,
  tbl_c.c_count
FROM
  ( SELECT COUNT(id) a_count, array_agg(id order by id) ids FROM table_a) tbl_a,
  ( SELECT COUNT(id) b_count, array_agg(id order by id) ids FROM table_b) tbl_b,
  ( SELECT COUNT(id) c_count, array_agg(id order by id) ids FROM table_c) tbl_c
WHERE
  tbl_a.ids = tbl_b.ids
  AND tbl_b.ids = tbl_c.ids

如果所有表的行数都相同,则上述查询只会return,确保 IDS 也相同。

因为我们只是计算,所以我认为没有必要在variable列加入table。 UNION 应该足够了。 我们仍然必须使用 DISTINCT 到 ignore/suppress 重复项,这通常意味着额外的排序。 variable 上的索引应该有助于获取单独 table 的计数,但它无助于获取组合 table.

的计数

这里有一个比较两个 table 的例子:

WITH
CTE_A
AS
(
    SELECT COUNT(DISTINCT variable) AS CountA
    FROM TableA
)
,CTE_B
AS
(
    SELECT COUNT(DISTINCT variable) AS CountB
    FROM TableB
)
,CTE_AB
AS
(
    SELECT COUNT(DISTINCT variable) AS CountAB
    FROM
    (
        SELECT variable
        FROM TableA

        UNION ALL 
        -- sic! use ALL here to avoid sort when merging two tables
        -- there should be only one distinct sort for the outer `COUNT`

        SELECT variable
        FROM TableB
    ) AS AB
)
SELECT
    CASE WHEN CountA = CountAB AND CountB = CountAB 
    THEN 'same' ELSE 'different' END AS ResultAB
FROM
    CTE_A
    CROSS JOIN CTE_B
    CROSS JOIN CTE_AB
;

三个table:

WITH
CTE_A
AS
(
    SELECT COUNT(DISTINCT variable) AS CountA
    FROM TableA
)
,CTE_B
AS
(
    SELECT COUNT(DISTINCT variable) AS CountB
    FROM TableB
)
,CTE_C
AS
(
    SELECT COUNT(DISTINCT variable) AS CountC
    FROM TableC
)
,CTE_ABC
AS
(
    SELECT COUNT(DISTINCT variable) AS CountABC
    FROM
    (
        SELECT variable
        FROM TableA

        UNION ALL 
        -- sic! use ALL here to avoid sort when merging two tables
        -- there should be only one distinct sort for the outer `COUNT`

        SELECT variable
        FROM TableB

        UNION ALL 
        -- sic! use ALL here to avoid sort when merging two tables
        -- there should be only one distinct sort for the outer `COUNT`

        SELECT variable
        FROM TableC
    ) AS AB
)
SELECT
    CASE WHEN CountA = CountABC AND CountB = CountABC AND CountC = CountABC 
    THEN 'same' ELSE 'different' END AS ResultABC
FROM
    CTE_A
    CROSS JOIN CTE_B
    CROSS JOIN CTE_C
    CROSS JOIN CTE_ABC
;

我特意选择了 CTE,因为据我所知,Postgres 实现了 CTE,而在我们的例子中,每个 CTE 将只有一行。


使用 array_agg with order by 是更好的变体,如果它在 redshift 上可用的话。您仍然需要使用 DISTINCT,但不必将所有 table 合并在一起。

WITH
CTE_A
AS
(
    SELECT array_agg(DISTINCT variable ORDER BY variable) AS A
    FROM TableA
)
,CTE_B
AS
(
    SELECT array_agg(DISTINCT variable ORDER BY variable) AS B
    FROM TableB
)
,CTE_C
AS
(
    SELECT array_agg(DISTINCT variable ORDER BY variable) AS C
    FROM TableC
)
SELECT
    CASE WHEN A = B AND B = C
    THEN 'same' ELSE 'different' END AS ResultABC
FROM
    CTE_A
    CROSS JOIN CTE_B
    CROSS JOIN CTE_C
;