在 Quanteda 中使用字典创建 Bigram
Using dictionary to create Bigram in Quanteda
我正在尝试从我的数据文本分析中删除拼写错误。所以我正在使用 quanteda 包的字典功能。它适用于 Unigrams。但它为 Bigrams 提供了意想不到的输出。不确定如何处理拼写错误,以免它们潜入我的双字母组和三字母组。
ZTestCorp1 <- c("The new law included a capital gains tax, and an inheritance tax.",
"New York City has raised a taxes: an income tax and a sales tax.")
ZcObj <- corpus(ZTestCorp1)
mydict <- dictionary(list("the"="the", "new"="new", "law"="law",
"capital"="capital", "gains"="gains", "tax"="tax",
"inheritance"="inheritance", "city"="city"))
Zdfm1 <- dfm(ZcObj, ngrams=2, concatenator=" ",
what = "fastestword",
toLower=TRUE, removeNumbers=TRUE,
removePunct=TRUE, removeSeparators=TRUE,
removeTwitter=TRUE, stem=FALSE,
ignoredFeatures=NULL,
language="english",
dictionary=mydict, valuetype="fixed")
wordsFreq1 <- colSums(sort(Zdfm1))
当前输出
> wordsFreq1
the new law capital gains tax inheritance city
0 0 0 0 0 0 0 0
不使用字典,输出结果如下:
> wordsFreq
tax and the new new law law included included a a capital
2 1 1 1 1 1
capital gains gains tax and an an inheritance inheritance tax new york
1 1 1 1 1 1
york city city has has raised raised a a taxes taxes an
1 1 1 1 1 1
an income income tax and a a sales sales tax
1 1 1 1 1
预期二元组
The new
new law
law capital
capital gains
gains tax
tax inheritance
inheritance city
p.s。我假设标记化是在字典匹配之后完成的。但根据我看到的结果,情况似乎并非如此。
另一方面,我尝试将字典对象创建为
mydict <- dictionary(list(mydict=c("the", "new", "law", "capital", "gains",
"tax", "inheritance", "city")))
但是没有用。所以我不得不使用上面我认为效率不高的方法。
更新
添加了基于 Ken 解决方案的输出:
> (myDfm1a <- dfm(ZcObj, verbose = FALSE, ngrams=2,
+ keptFeatures = c("the", "new", "law", "capital", "gains", "tax", "inheritance", "city")))
Document-feature matrix of: 2 documents, 14 features.
2 x 14 sparse Matrix of class "dfmSparse" features
docs the_new new_law law_included a_capital capital_gains gains_tax tax_and an_inheritance
text1 1 1 1 1 1 1 1 1
text2 0 0 0 0 0 0 1 0
features
docs inheritance_tax new_york york_city city_has income_tax sales_tax
text1 1 0 0 0 0 0
text2 0 1 1 1 1 1
2017 年 12 月 21 日更新了较新版本的 quanteda
很高兴看到您正在使用该软件包!我认为你正在努力解决的问题有两个。首先是如何在形成 ngram 之前应用特征选择。二是一般如何定义特征选择(使用quanteda)。
第一期:如何在形成ngrams之前应用特征选择。在这里,您定义了一个字典来执行此操作。 (正如我将在下面展示的那样,这里没有必要。)您想删除所有不在选择列表中的术语,然后形成二连词。默认情况下,quanteda 不会这样做,因为它不是 "bigram" 的标准形式,其中单词不会根据邻接严格定义的某些 window 并置。例如,在您的预期结果中,law capital
不是一对相邻项,这是二元词的通常定义。
然而,我们可以通过构建更多文档特征矩阵来覆盖此行为 "manually"。
首先,将文本标记化。
# tokenize the original
toks <- tokens(ZcObj, removePunct = TRUE, removeNumbers = TRUE) %>%
tokens_tolower()
toks
## tokens object from 2 documents.
## text1 :
## [1] "the" "new" "law" "included" "a" "capital" "gains" "tax" "and" "an" "inheritance" "tax"
##
## text2 :
## [1] "new" "york" "city" "has" "raised" "a" "taxes" "an" "income" "tax" "and" "a" "sales" "tax"
现在我们使用 tokens_select()
:
将您的词典 mydict
应用于标记化文本
(toksDict <- tokens_select(toks, mydict, selection = "keep"))
## tokens object from 2 documents.
## text1 :
## [1] "the" "new" "law" "capital" "gains" "tax" "inheritance" "tax"
##
## text2 :
## [1] "new" "city" "tax" "tax"
从这组选定的标记中,我们现在可以形成双字母组(或者我们可以将 toksDict
直接提供给 dfm()
):
(toks2 <- tokens_ngrams(toksDict, n = 2, concatenator = " "))
## tokens object from 2 documents.
## text1 :
## [1] "the new" "new law" "law capital" "capital gains" "gains tax" "tax inheritance" "inheritance tax"
##
## text2 :
## [1] "new city" "city tax" "tax tax"
# now create the dfm
(myDfm2 <- dfm(toks2))
## Document-feature matrix of: 2 documents, 10 features.
## 2 x 10 sparse Matrix of class "dfm"
## features
## docs the new new law law capital capital gains gains tax tax inheritance inheritance tax new city city tax tax tax
## text1 1 1 1 1 1 1 1 0 0 0
## text2 0 0 0 0 0 0 0 1 1 1
topfeatures(myDfm2)
# the new new law law capital capital gains gains tax tax inheritance inheritance tax new city city tax tax tax
# 1 1 1 1 1 1 1 1 1 1
功能列表现在非常接近您想要的。
第二个问题 是您的字典方法似乎效率低下的原因。这是因为您正在创建一个字典来执行特征选择,但并没有真正将其用作字典——换句话说,每个键等于其自己的键作为值的字典并不是真正的字典。只需为其提供一个选择标记的字符向量,它就可以正常工作,例如:
(myDfm1 <- dfm(ZcObj, verbose = FALSE,
keptFeatures = c("the", "new", "law", "capital", "gains", "tax", "inheritance", "city")))
## Document-feature matrix of: 2 documents, 8 features.
## 2 x 8 sparse Matrix of class "dfm"
## features
## docs the new law capital gains tax inheritance city
## text1 1 1 1 1 1 2 1 0
## text2 0 1 0 0 0 2 0 1
我正在尝试从我的数据文本分析中删除拼写错误。所以我正在使用 quanteda 包的字典功能。它适用于 Unigrams。但它为 Bigrams 提供了意想不到的输出。不确定如何处理拼写错误,以免它们潜入我的双字母组和三字母组。
ZTestCorp1 <- c("The new law included a capital gains tax, and an inheritance tax.",
"New York City has raised a taxes: an income tax and a sales tax.")
ZcObj <- corpus(ZTestCorp1)
mydict <- dictionary(list("the"="the", "new"="new", "law"="law",
"capital"="capital", "gains"="gains", "tax"="tax",
"inheritance"="inheritance", "city"="city"))
Zdfm1 <- dfm(ZcObj, ngrams=2, concatenator=" ",
what = "fastestword",
toLower=TRUE, removeNumbers=TRUE,
removePunct=TRUE, removeSeparators=TRUE,
removeTwitter=TRUE, stem=FALSE,
ignoredFeatures=NULL,
language="english",
dictionary=mydict, valuetype="fixed")
wordsFreq1 <- colSums(sort(Zdfm1))
当前输出
> wordsFreq1
the new law capital gains tax inheritance city
0 0 0 0 0 0 0 0
不使用字典,输出结果如下:
> wordsFreq
tax and the new new law law included included a a capital
2 1 1 1 1 1
capital gains gains tax and an an inheritance inheritance tax new york
1 1 1 1 1 1
york city city has has raised raised a a taxes taxes an
1 1 1 1 1 1
an income income tax and a a sales sales tax
1 1 1 1 1
预期二元组
The new
new law
law capital
capital gains
gains tax
tax inheritance
inheritance city
p.s。我假设标记化是在字典匹配之后完成的。但根据我看到的结果,情况似乎并非如此。
另一方面,我尝试将字典对象创建为
mydict <- dictionary(list(mydict=c("the", "new", "law", "capital", "gains",
"tax", "inheritance", "city")))
但是没有用。所以我不得不使用上面我认为效率不高的方法。
更新 添加了基于 Ken 解决方案的输出:
> (myDfm1a <- dfm(ZcObj, verbose = FALSE, ngrams=2,
+ keptFeatures = c("the", "new", "law", "capital", "gains", "tax", "inheritance", "city")))
Document-feature matrix of: 2 documents, 14 features.
2 x 14 sparse Matrix of class "dfmSparse" features
docs the_new new_law law_included a_capital capital_gains gains_tax tax_and an_inheritance
text1 1 1 1 1 1 1 1 1
text2 0 0 0 0 0 0 1 0
features
docs inheritance_tax new_york york_city city_has income_tax sales_tax
text1 1 0 0 0 0 0
text2 0 1 1 1 1 1
2017 年 12 月 21 日更新了较新版本的 quanteda
很高兴看到您正在使用该软件包!我认为你正在努力解决的问题有两个。首先是如何在形成 ngram 之前应用特征选择。二是一般如何定义特征选择(使用quanteda)。
第一期:如何在形成ngrams之前应用特征选择。在这里,您定义了一个字典来执行此操作。 (正如我将在下面展示的那样,这里没有必要。)您想删除所有不在选择列表中的术语,然后形成二连词。默认情况下,quanteda 不会这样做,因为它不是 "bigram" 的标准形式,其中单词不会根据邻接严格定义的某些 window 并置。例如,在您的预期结果中,law capital
不是一对相邻项,这是二元词的通常定义。
然而,我们可以通过构建更多文档特征矩阵来覆盖此行为 "manually"。
首先,将文本标记化。
# tokenize the original
toks <- tokens(ZcObj, removePunct = TRUE, removeNumbers = TRUE) %>%
tokens_tolower()
toks
## tokens object from 2 documents.
## text1 :
## [1] "the" "new" "law" "included" "a" "capital" "gains" "tax" "and" "an" "inheritance" "tax"
##
## text2 :
## [1] "new" "york" "city" "has" "raised" "a" "taxes" "an" "income" "tax" "and" "a" "sales" "tax"
现在我们使用 tokens_select()
:
mydict
应用于标记化文本
(toksDict <- tokens_select(toks, mydict, selection = "keep"))
## tokens object from 2 documents.
## text1 :
## [1] "the" "new" "law" "capital" "gains" "tax" "inheritance" "tax"
##
## text2 :
## [1] "new" "city" "tax" "tax"
从这组选定的标记中,我们现在可以形成双字母组(或者我们可以将 toksDict
直接提供给 dfm()
):
(toks2 <- tokens_ngrams(toksDict, n = 2, concatenator = " "))
## tokens object from 2 documents.
## text1 :
## [1] "the new" "new law" "law capital" "capital gains" "gains tax" "tax inheritance" "inheritance tax"
##
## text2 :
## [1] "new city" "city tax" "tax tax"
# now create the dfm
(myDfm2 <- dfm(toks2))
## Document-feature matrix of: 2 documents, 10 features.
## 2 x 10 sparse Matrix of class "dfm"
## features
## docs the new new law law capital capital gains gains tax tax inheritance inheritance tax new city city tax tax tax
## text1 1 1 1 1 1 1 1 0 0 0
## text2 0 0 0 0 0 0 0 1 1 1
topfeatures(myDfm2)
# the new new law law capital capital gains gains tax tax inheritance inheritance tax new city city tax tax tax
# 1 1 1 1 1 1 1 1 1 1
功能列表现在非常接近您想要的。
第二个问题 是您的字典方法似乎效率低下的原因。这是因为您正在创建一个字典来执行特征选择,但并没有真正将其用作字典——换句话说,每个键等于其自己的键作为值的字典并不是真正的字典。只需为其提供一个选择标记的字符向量,它就可以正常工作,例如:
(myDfm1 <- dfm(ZcObj, verbose = FALSE,
keptFeatures = c("the", "new", "law", "capital", "gains", "tax", "inheritance", "city")))
## Document-feature matrix of: 2 documents, 8 features.
## 2 x 8 sparse Matrix of class "dfm"
## features
## docs the new law capital gains tax inheritance city
## text1 1 1 1 1 1 2 1 0
## text2 0 1 0 0 0 2 0 1