沿坐标列表给定的路径矢量化 haversine 距离计算
Vectorize haversine distance computation along path given by list of coordinates
我有一个坐标列表,可以使用 haversine distance 度量计算所有点之间的距离矩阵。
坐标来自 numpy.array
形状 (n, 2)
(latitude, longitude)
对:
[[ 16.34576887 -107.90942116]
[ 12.49474931 -107.76030036]
[ 27.79461514 -107.98607881]
...
[ 12.90258404 -107.96786569]
[ -6.29109889 -107.88681145]
[ -2.68531605 -107.72796034]]
我还可以提取沿坐标序列隐含的路径的距离,如下所示:
coordinates = np.deg2rad(coordinates)
lat, lng = coordinates[:, 0], coordinates[:, 1]
diff_lat = lat[:, None] - lat
diff_lng = lng[:, None] - lng
d = np.sin(diff_lat / 2) ** 2 + np.cos(lat[:, None]) * np.cos(lat) * np.sin(diff_lng / 2) ** 2
dist_matrix = 2 * 6371 * np.arcsin(np.sqrt(d))
np.diagonal(dist_matrix, offset=1)
[ 428.51472359 1701.42935402 1849.52714339 12707.47743385
13723.9087041 4521.8250695 2134.258953 401.33113696
4571.69119707 73.82631307 6078.48898641 9870.17140175
...
2109.57319898 12959.56540448 16680.64546196 3050.96912506
3419.95053226 4209.71641445 9467.85523888 2805.65191129
4120.18701177]
我只想计算距离向量而不是整个矩阵,然后选择相关的对角线。
这是一种无需创建大矩阵即可对该计算进行矢量化的方法。 coslat
是纬度的余弦数组,coslat[:-1]*coslat[1:]
是表达式 cos(ϕ1)cos(ϕ 的向量化版本2) 在 Haversine 公式中。
from __future__ import division, print_function
import numpy as np
def hav(theta):
return np.sin(theta/2)**2
coords = [[ 16.34576887, -107.90942116],
[ 12.49474931, -107.76030036],
[ 27.79461514, -107.98607881],
[ 12.90258404, -107.96786569],
[ -6.29109889, -107.88681145],
[ -2.68531605, -107.72796034]]
r = 6371
coordinates = np.deg2rad(coords)
lat = coordinates[:, 0]
lng = coordinates[:, 1]
coslat = np.cos(lat)
t = hav(np.diff(lat)) + coslat[:-1]*coslat[1:]*hav(np.diff(lng))
d = 2*r*np.arcsin(np.sqrt(t))
print(d)
输出:
[ 428.51472353 1701.42935412 1655.91938575 2134.25895299 401.33113696]
我有一个坐标列表,可以使用 haversine distance 度量计算所有点之间的距离矩阵。
坐标来自 numpy.array
形状 (n, 2)
(latitude, longitude)
对:
[[ 16.34576887 -107.90942116]
[ 12.49474931 -107.76030036]
[ 27.79461514 -107.98607881]
...
[ 12.90258404 -107.96786569]
[ -6.29109889 -107.88681145]
[ -2.68531605 -107.72796034]]
我还可以提取沿坐标序列隐含的路径的距离,如下所示:
coordinates = np.deg2rad(coordinates)
lat, lng = coordinates[:, 0], coordinates[:, 1]
diff_lat = lat[:, None] - lat
diff_lng = lng[:, None] - lng
d = np.sin(diff_lat / 2) ** 2 + np.cos(lat[:, None]) * np.cos(lat) * np.sin(diff_lng / 2) ** 2
dist_matrix = 2 * 6371 * np.arcsin(np.sqrt(d))
np.diagonal(dist_matrix, offset=1)
[ 428.51472359 1701.42935402 1849.52714339 12707.47743385
13723.9087041 4521.8250695 2134.258953 401.33113696
4571.69119707 73.82631307 6078.48898641 9870.17140175
...
2109.57319898 12959.56540448 16680.64546196 3050.96912506
3419.95053226 4209.71641445 9467.85523888 2805.65191129
4120.18701177]
我只想计算距离向量而不是整个矩阵,然后选择相关的对角线。
这是一种无需创建大矩阵即可对该计算进行矢量化的方法。 coslat
是纬度的余弦数组,coslat[:-1]*coslat[1:]
是表达式 cos(ϕ1)cos(ϕ 的向量化版本2) 在 Haversine 公式中。
from __future__ import division, print_function
import numpy as np
def hav(theta):
return np.sin(theta/2)**2
coords = [[ 16.34576887, -107.90942116],
[ 12.49474931, -107.76030036],
[ 27.79461514, -107.98607881],
[ 12.90258404, -107.96786569],
[ -6.29109889, -107.88681145],
[ -2.68531605, -107.72796034]]
r = 6371
coordinates = np.deg2rad(coords)
lat = coordinates[:, 0]
lng = coordinates[:, 1]
coslat = np.cos(lat)
t = hav(np.diff(lat)) + coslat[:-1]*coslat[1:]*hav(np.diff(lng))
d = 2*r*np.arcsin(np.sqrt(t))
print(d)
输出:
[ 428.51472353 1701.42935412 1655.91938575 2134.25895299 401.33113696]