在 Scala 中获取和设置状态

Getting and setting state in scala

以下是《Scala 函数式编程》一书中的一些代码:

  import State._

  case class State[S, +A](run: S => (A, S)) {
    def map[B](f: A => B): State[S, B] =
      flatMap(a => unit(f(a)))

    def map2[B, C](sb: State[S, B])(f: (A, B) => C): State[S, C] =
      flatMap(a => sb.map(b => f(a, b)))

    def flatMap[B](f: A => State[S, B]): State[S, B] = State(s => {
      val (a, s1) = run(s)
      f(a).run(s1)
    })
  }

  object State {
    type Rand[A] = State[RNG, A]

    def unit[S, A](a: A): State[S, A] =
      State(s => (a, s))

    // The idiomatic solution is expressed via foldRight
    def sequenceViaFoldRight[S, A](sas: List[State[S, A]]): State[S, List[A]] =
      sas.foldRight(unit[S, List[A]](List.empty[A]))((f, acc) => f.map2(acc)(_ :: _))

    // This implementation uses a loop internally and is the same recursion
    // pattern as a left fold. It is quite common with left folds to build
    // up a list in reverse order, then reverse it at the end.
    // (We could also use a collection.mutable.ListBuffer internally.)
    def sequence[S, A](sas: List[State[S, A]]): State[S, List[A]] = {
      def go(s: S, actions: List[State[S, A]], acc: List[A]): (List[A], S) =
        actions match {
          case Nil => (acc.reverse, s)
          case h :: t => h.run(s) match {
            case (a, s2) => go(s2, t, a :: acc)
          }
        }
      State((s: S) => go(s, sas, List()))
    }

    // We can also write the loop using a left fold. This is tail recursive like the
    // previous solution, but it reverses the list _before_ folding it instead of after.
    // You might think that this is slower than the `foldRight` solution since it
    // walks over the list twice, but it's actually faster! The `foldRight` solution
    // technically has to also walk the list twice, since it has to unravel the call
    // stack, not being tail recursive. And the call stack will be as tall as the list
    // is long.
    def sequenceViaFoldLeft[S, A](l: List[State[S, A]]): State[S, List[A]] =
      l.reverse.foldLeft(unit[S, List[A]](List()))((acc, f) => f.map2(acc)(_ :: _))

    def modify[S](f: S => S): State[S, Unit] = for {
      s <- get // Gets the current state and assigns it to `s`.
      _ <- set(f(s)) // Sets the new state to `f` applied to `s`.
    } yield ()

    def get[S]: State[S, S] = State(s => (s, s))

    def set[S](s: S): State[S, Unit] = State(_ => ((), s))
  }

我花了几个小时思考为什么 getset 方法看起来像它们的样子,但我就是不明白。

请问谁能赐教吗?

关键在第三行:

case class State[S, +A](run: S => (A, S))

状态计算用run函数表示。此函数表示从一种状态 S 到另一种状态 S 的转换。 A 是我们从一种状态移动到另一种状态时可以产生的值。

现在,我们如何从 state-monad 中取出状态 S?我们可以进行不进入不同状态的转换,并且我们使用函数 s => (s, s):

将状态具体化为 A
def get[S]: State[S, S] = State(s => (s, s))

如何设置状态?我们所需要的只是一个进入状态 s 的函数:??? => (???, s):

def set[S](s: S): State[S, Unit] = State(_ => ((), s))

编辑我想添加一个示例以查看 getset 的实际效果:

val statefullComputationsCombined = for {
  a <- State.get[Int]
  b <- State.set(10)
  c <- State.get[Int]
  d <- State.set(100)
  e <- State.get[Int]
} yield (a, c, e)

无需进一步查看此答案,statefullComputationsCombined 的类型是什么?

一定是State[S, A]吧? SInt 类型,但 A 是什么?因为我们产生 (a, c, e) 必须是由 flatmap 步骤的 A 组成的三元组 (<-).

我们说 get "fill" A 状态 S 所以 a, c ,dS 类型,所以 Intb, dUnit 因为 def set[S](s: S): State[S, Unit].

val statefullComputationsCombined: State[Int, (Int, Int, Int)] = for ...

要使用 statefullComputationsCombined 我们需要 run 它:

statefullComputationsCombined.run(1)._1 == (1,10,100)

如果我们想要计算结束时的状态:

statefullComputationsCombined.run(1)._2 == 100