神经网络反向传播算法在 Python 中不起作用

Neural network backpropagation algorithm not working in Python

我正在 Python 中编写一个神经网络,遵循示例 here。似乎反向传播算法不起作用,因为神经网络在训练 10,000 次后未能产生正确的值(在误差范围内)。具体来说,我正在训练它计算以下示例中的正弦函数:

import numpy as np

class Neuralnet:
    def __init__(self, neurons):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = .1
        for layer in range(len(neurons)):
            self.inputs.append(np.empty(neurons[layer]))
            self.outputs.append(np.empty(neurons[layer]))
            self.errors.append(np.empty(neurons[layer]))
        for layer in range(len(neurons)-1):
            self.weights.append(
                np.random.normal(
                    scale=1/np.sqrt(neurons[layer]), 
                    size=[neurons[layer], neurons[layer + 1]]
                    )
                )

    def feedforward(self, inputs):
        self.inputs[0] = inputs
        for layer in range(len(self.weights)):
            self.outputs[layer] = np.tanh(self.inputs[layer])
            self.inputs[layer + 1] = np.dot(self.weights[layer].T, self.outputs[layer])
        self.outputs[-1] = np.tanh(self.inputs[-1])

    def backpropagate(self, targets):
        gradient = 1 - self.outputs[-1] * self.outputs[-1]
        self.errors[-1] = gradient * (self.outputs[-1] - targets)
        for layer in reversed(range(len(self.errors) - 1)):
            gradient = 1 - self.outputs[layer] * self.outputs[layer]
            self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
        for layer in range(len(self.weights)):
            self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])

def xor_example():
    net = Neuralnet([2, 2, 1])
    for step in range(100000):
        net.feedforward([0, 0])
        net.backpropagate([-1])
        net.feedforward([0, 1])
        net.backpropagate([1])
        net.feedforward([1, 0])
        net.backpropagate([1])
        net.feedforward([1, 1])
        net.backpropagate([-1])
    net.feedforward([1, 1])
    print(net.outputs[-1])

def identity_example():
    net = Neuralnet([1, 3, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(x)])
    net.feedforward([-2])
    print(net.outputs[-1])

def sine_example():
    net = Neuralnet([1, 6, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(np.sin(x))])
    net.feedforward([3])
    print(net.outputs[-1])

sine_example()

输出未能接近tanh(sin(3)) = 0.140190616。我怀疑是一个涉及错误索引或对齐的错误,但 Numpy 不会引发任何此类错误。关于我哪里出错的任何提示?

编辑: 我忘了添加偏差神经元。这是更新后的代码:

import numpy as np

class Neuralnet:
    def __init__(self, neurons):
        self.weights = []
        self.outputs = []
        self.inputs = []
        self.errors = []
        self.offsets = []
        self.rate = .01
        for layer in range(len(neurons)-1):
            self.weights.append(
                np.random.normal(
                    scale=1/np.sqrt(neurons[layer]), 
                    size=[neurons[layer], neurons[layer + 1]]
                    )
                )
            self.outputs.append(np.empty(neurons[layer]))
            self.inputs.append(np.empty(neurons[layer]))
            self.errors.append(np.empty(neurons[layer]))
            self.offsets.append(np.random.normal(scale=1/np.sqrt(neurons[layer]), size=neurons[layer + 1]))
        self.inputs.append(np.empty(neurons[-1]))
        self.errors.append(np.empty(neurons[-1]))

    def feedforward(self, inputs):
        self.inputs[0] = inputs
        for layer in range(len(self.weights)):
            self.outputs[layer] = np.tanh(self.inputs[layer])
            self.inputs[layer + 1] = self.offsets[layer] + np.dot(self.weights[layer].T, self.outputs[layer])

    def backpropagate(self, targets):
        self.errors[-1] = self.inputs[-1] - targets
        for layer in reversed(range(len(self.errors) - 1)):
            gradient = 1 - self.outputs[layer] * self.outputs[layer]
            self.errors[layer] = gradient * np.dot(self.weights[layer], self.errors[layer + 1])
        for layer in range(len(self.weights)):
            self.weights[layer] -= self.rate * np.outer(self.outputs[layer], self.errors[layer + 1])
            self.offsets[layer] -= self.rate * self.errors[layer + 1]

def sine_example():
    net = Neuralnet([1, 5, 1])
    for step in range(10000):
        x = np.random.uniform(-5, 5)
        net.feedforward([x])
        net.backpropagate([np.sin(x)])
    net.feedforward([np.pi])
    print(net.inputs[-1])

def xor_example():
    net = Neuralnet([2, 2, 1])
    for step in range(10000):
        net.feedforward([0, 0])
        net.backpropagate([-1])
        net.feedforward([0, 1])
        net.backpropagate([1])
        net.feedforward([1, 0])
        net.backpropagate([1])
        net.feedforward([1, 1])
        net.backpropagate([-1])
    net.feedforward([1, 1])
    print(net.outputs[-1])

def identity_example():
    net = Neuralnet([1, 3, 1])
    for step in range(10000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([x])
    net.feedforward([-2])
    print(net.outputs[-1])

identity_example()

我认为你以错误的方式训练神经网络。您有一个超过 10000 次迭代的循环,并在每个循环中提供一个新样本。在这种情况下,NN 永远不会接受训练。

(说法有误!请看更新!)

你需要做的是生成大量真实样本Y = sin(X),交给你的网络ONCE 并向前和向后迭代训练集,以最小化成本函数。要检查算法,您可能需要根据迭代次数绘制成本函数并确保成本下降。

还有一个重点是权重的初始化。您的数字非常大,网络需要很长时间才能收敛,尤其是在使用低速率时。最好在[-eps .. eps]的小范围内统一生成初始权重。

在我的代码中,我实现了两个不同的激活函数:sigmoid()tanh()。您需要根据所选函数缩放输入:分别为 [0 .. 1][-1 .. 1]

这里有一些图像显示了 sigmoid()tanh() 激活函数的成本函数和结果预测:

如您所见,sigmoid() 激活比 tanh().

提供了更好的结果

此外,与具有 4 层的更大网络 [1, 6, 4, 1] 相比,我在使用网络 [1, 6, 1] 时得到了更好的预测。所以 NN 的大小并不总是关键因素。这是对上述 4 层网络的预测:

这是我的代码,带有一些注释。我试着尽可能地使用你的符号。

import numpy as np
import math
import matplotlib.pyplot as plt

class Neuralnet:
    def __init__(self, neurons, activation):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = 0.5
        self.activation = activation    #sigmoid or tanh

        self.neurons = neurons
        self.L = len(self.neurons)      #number of layers

        eps = 0.12;    # range for uniform distribution   -eps..+eps              
        for layer in range(len(neurons)-1):
            self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))            


    ###################################################################################################    
    def train(self, X, Y, iter_count):

        m = X.shape[0];

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        
            self.errors.append(np.empty([m, self.neurons[layer]]))

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        #accumulate the cost function
        J_history = np.zeros([iter_count, 1])


        for i in range(iter_count):

            self.feedforward(X)

            J = self.cost(Y, self.outputs[self.L-1])
            J_history[i, 0] = J

            self.backpropagate(Y)


        #plot the cost function to check the descent
        plt.plot(J_history)
        plt.show()


    ###################################################################################################    
    def cost(self, Y, H):     
        J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
        return J

    ###################################################################################################
    def feedforward(self, X):

        m = X.shape[0];

        self.outputs[0] = np.concatenate(  (np.ones([m, 1]),   X),   axis=1)

        for i in range(1, self.L):
            self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T  )

            if (self.activation == 'sigmoid'):
                output_temp = self.sigmoid(self.inputs[i])
            elif (self.activation == 'tanh'):
                output_temp = np.tanh(self.inputs[i])


            if (i < self.L - 1):
                self.outputs[i] = np.concatenate(  (np.ones([m, 1]),   output_temp),   axis=1)
            else:
                self.outputs[i] = output_temp

    ###################################################################################################
    def backpropagate(self, Y):

        self.errors[self.L-1] = self.outputs[self.L-1] - Y

        for i in range(self.L - 2, 0, -1):

            if (self.activation == 'sigmoid'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  self.sigmoid_prime(self.inputs[i])
            elif (self.activation == 'tanh'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])

        for i in range(0, self.L-1):
            grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
            self.weights[i] = self.weights[i] - self.rate*grad

    ###################################################################################################
    def sigmoid(self, z):
        s = 1.0/(1.0 + np.exp(-z))
        return s

    ###################################################################################################
    def sigmoid_prime(self, z):
        s = self.sigmoid(z)*(1 - self.sigmoid(z))
        return s    

    ###################################################################################################
    def predict(self, X, weights):

        m = X.shape[0];

        self.inputs = []
        self.outputs = []
        self.weights = weights

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        self.feedforward(X)

        return self.outputs[self.L-1]


###################################################################################################
#                MAIN PART

activation1 = 'sigmoid'     # the input should be scaled into [ 0..1]
activation2 = 'tanh'        # the input should be scaled into [-1..1]

activation = activation1

net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function


##########################################################################################
#                TRAINING

m = 1000 #size of the training set
X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); # input training set


Y = np.sin(X) # target

kx = 0.1 # noise parameter
noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
Y = Y + noise # noisy target

# scaling of the target depending on the activation function
if (activation == 'sigmoid'):
    Y_scaled = (Y/(1+kx) + 1)/2.0
elif (activation == 'tanh'):
    Y_scaled = Y/(1+kx)


# number of the iteration for the training stage
iter_count = 20000
net.train(X, Y_scaled, iter_count) #training

# gained weights
trained_weights = net.weights

##########################################################################################
#                 PREDICTION

m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);

Y_new = net.predict(X_new, trained_weights) # prediction

#rescaling of the result 
if (activation == 'sigmoid'):
    Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
    Y_new = Y_new * (1+kx)

# visualization
plt.plot(X, Y)
plt.plot(X_new, Y_new, 'ro')
plt.show()

raw_input('press any key to exit')

更新

我想收回有关您代码中使用的训练方法的声明。网络确实可以在每次迭代中仅使用一个样本进行训练。我在 online-training 中使用 sigmoid 和 tanh 激活函数得到了有趣的结果:

Online-training 使用 Sigmoid(成本函数和预测)

Online-training 使用 Tanh(成本函数和预测)

可以看出,选择 Sigmoid 作为激活函数具有更好的性能。成本函数看起来不像 offline-training 期间那么好,但至少它趋于下降。

我在你的实现中绘制了成本函数,它看起来也很不稳定:

用 sigmoid 甚至 ReLU 函数尝试你的代码可能是个好主意。

这是更新后的源代码。要在 onlineoffline 训练模式之间切换,只需更改 method 变量。

import numpy as np
import math
import matplotlib.pyplot as plt

class Neuralnet:
    def __init__(self, neurons, activation):
        self.weights = []
        self.inputs = []
        self.outputs = []
        self.errors = []
        self.rate = 0.2
        self.activation = activation    #sigmoid or tanh

        self.neurons = neurons
        self.L = len(self.neurons)      #number of layers

        eps = 0.12;    #range for uniform distribution   -eps..+eps              
        for layer in range(len(neurons)-1):
            self.weights.append(np.random.uniform(-eps,eps,size=(neurons[layer+1], neurons[layer]+1)))            


    ###################################################################################################    
    def train(self, X, Y, iter_count):

        m = X.shape[0];

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        
            self.errors.append(np.empty([m, self.neurons[layer]]))

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        #accumulate the cost function
        J_history = np.zeros([iter_count, 1])


        for i in range(iter_count):

            self.feedforward(X)

            J = self.cost(Y, self.outputs[self.L-1])
            J_history[i, 0] = J

            self.backpropagate(Y)


        #plot the cost function to check the descent
        #plt.plot(J_history)
        #plt.show()


    ###################################################################################################    
    def cost(self, Y, H):     
        J = np.sum(np.sum(np.power((Y - H), 2), axis=0))/(2*m)
        return J


    ###################################################################################################
    def cost_online(self, min_x, max_x, iter_number):
        h_arr = np.zeros([iter_number, 1])
        y_arr = np.zeros([iter_number, 1])

        for step in range(iter_number):
            x = np.random.uniform(min_x, max_x, 1).reshape(1, 1)

            self.feedforward(x)
            h_arr[step, 0] = self.outputs[-1]
            y_arr[step, 0] = np.sin(x)



        J = np.sum(np.sum(np.power((y_arr - h_arr), 2), axis=0))/(2*iter_number)
        return J

    ###################################################################################################
    def feedforward(self, X):

        m = X.shape[0];

        self.outputs[0] = np.concatenate(  (np.ones([m, 1]),   X),   axis=1)

        for i in range(1, self.L):
            self.inputs[i] = np.dot( self.outputs[i-1], self.weights[i-1].T  )

            if (self.activation == 'sigmoid'):
                output_temp = self.sigmoid(self.inputs[i])
            elif (self.activation == 'tanh'):
                output_temp = np.tanh(self.inputs[i])


            if (i < self.L - 1):
                self.outputs[i] = np.concatenate(  (np.ones([m, 1]),   output_temp),   axis=1)
            else:
                self.outputs[i] = output_temp

    ###################################################################################################
    def backpropagate(self, Y):

        self.errors[self.L-1] = self.outputs[self.L-1] - Y

        for i in range(self.L - 2, 0, -1):

            if (self.activation == 'sigmoid'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  self.sigmoid_prime(self.inputs[i])
            elif (self.activation == 'tanh'):
                self.errors[i] = np.dot(  self.errors[i+1],   self.weights[i][:, 1:]  ) *  (1 - self.outputs[i][:, 1:]*self.outputs[i][:, 1:])

        for i in range(0, self.L-1):
            grad = np.dot(self.errors[i+1].T, self.outputs[i]) / m
            self.weights[i] = self.weights[i] - self.rate*grad


    ###################################################################################################
    def sigmoid(self, z):
        s = 1.0/(1.0 + np.exp(-z))
        return s

    ###################################################################################################
    def sigmoid_prime(self, z):
        s = self.sigmoid(z)*(1 - self.sigmoid(z))
        return s    

    ###################################################################################################
    def predict(self, X, weights):

        m = X.shape[0];

        self.inputs = []
        self.outputs = []
        self.weights = weights

        for layer in range(self.L):
            self.inputs.append(np.empty([m, self.neurons[layer]]))        

            if (layer < self.L -1):
                self.outputs.append(np.empty([m, self.neurons[layer]+1]))
            else:
                self.outputs.append(np.empty([m, self.neurons[layer]]))

        self.feedforward(X)

        return self.outputs[self.L-1]


###################################################################################################
#                MAIN PART

activation1 = 'sigmoid'     #the input should be scaled into [0..1]
activation2 = 'tanh'        #the input should be scaled into [-1..1]

activation = activation1

net = Neuralnet([1, 6, 1], activation) # structure of the NN and its activation function


method1 = 'online'
method2 = 'offline'

method = method1

kx = 0.1 #noise parameter

###################################################################################################
#                TRAINING

if (method == 'offline'):

    m = 1000 #size of the training set
    X = np.linspace(0, 4*math.pi, num = m).reshape(m, 1); #input training set


    Y = np.sin(X) #target


    noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
    Y = Y + noise #noisy target

    #scaling of the target depending on the activation function
    if (activation == 'sigmoid'):
        Y_scaled = (Y/(1+kx) + 1)/2.0
    elif (activation == 'tanh'):
        Y_scaled = Y/(1+kx)


    #number of the iteration for the training stage
    iter_count = 20000
    net.train(X, Y_scaled, iter_count) #training

elif (method == 'online'):

    sampling_count = 100000 # number of samplings during the training stage


    m = 1 #batch size

    iter_count = sampling_count/m

    for layer in range(net.L):
        net.inputs.append(np.empty([m, net.neurons[layer]]))        
        net.errors.append(np.empty([m, net.neurons[layer]]))

        if (layer < net.L -1):
            net.outputs.append(np.empty([m, net.neurons[layer]+1]))
        else:
            net.outputs.append(np.empty([m, net.neurons[layer]]))    

    J_history = []
    step_history = []

    for i in range(iter_count):
        X = np.random.uniform(0, 4*math.pi, m).reshape(m, 1)

        Y = np.sin(X) #target
        noise = (2.0*np.random.uniform(0, kx, m) - kx).reshape(m, 1)
        Y = Y + noise #noisy target

        #scaling of the target depending on the activation function
        if (activation == 'sigmoid'):
            Y_scaled = (Y/(1+kx) + 1)/2.0
        elif (activation == 'tanh'):
            Y_scaled = Y/(1+kx)

        net.feedforward(X)
        net.backpropagate(Y_scaled)


        if (np.remainder(i, 1000) == 0):
            J = net.cost_online(0, 4*math.pi, 1000)
            J_history.append(J)
            step_history.append(i)

    plt.plot(step_history, J_history)
    plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
    #plt.ylim([0, 0.1])

    plt.show()

#gained weights
trained_weights = net.weights

##########################################################################################
#                 PREDICTION

m_new = 40 #size of the prediction set
X_new = np.linspace(0, 4*math.pi, num = m_new).reshape(m_new, 1);

Y_new = net.predict(X_new, trained_weights) #prediction

#rescaling of the result 
if (activation == 'sigmoid'):
    Y_new = (2.0*Y_new - 1.0) * (1+kx)
elif (activation == 'tanh'):
    Y_new = Y_new * (1+kx)

#visualization

#fake sine curve to show the ideal signal
if (method == 'online'):
    X = np.linspace(0, 4*math.pi, num = 100)
    Y = np.sin(X)

plt.plot(X, Y)

plt.plot(X_new, Y_new, 'ro')
if (method == 'online'):
    plt.title('Batch size ' + str(m) + ', rate ' + str(net.rate) + ', samples ' + str(sampling_count))
plt.ylim([-1.5, 1.5])
plt.show()

raw_input('press any key to exit')

现在我对您当前的代码有一些评论:

您的正弦函数如下所示:

def sine_example():
    net = Neuralnet([1, 6, 1])
    for step in range(100000):
        x = np.random.normal()
        net.feedforward([x])
        net.backpropagate([np.tanh(np.sin(x))])
    net.feedforward([3])
    print(net.outputs[-1])

我不知道你为什么在目标输入中使用 tanh。如果你真的想使用正弦的 tanh 作为目标,你需要将它缩放到 [-1..1],因为 tanh(sin(x)) returns 值在 [-0.76..0.76].[=39= 范围内]

接下来是训练集的范围。您使用 x = np.random.normal() 生成样本。这是这样一个输入的分布:

之后你希望你的网络预测 3 的正弦,但网络在训练阶段几乎从未见过这个数字。我会在更广泛的范围内使用均匀分布来代替样本生成。