从类别中生成 "category-intervals"
generate "category-intervals" from categories
我想从类别中生成 "category intervals"。
例如,假设我有以下内容:
>>> df['start'].describe()
count 259431.000000
mean 10.435858
std 5.504730
min 0.000000
25% 6.000000
50% 11.000000
75% 15.000000
max 20.000000
Name: start, dtype: float64
我的专栏的唯一值是:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20], dtype=int8)
但我想使用以下间隔列表:
>>> intervals
[[0, 2.2222222222222223],
[2.2222222222222223, 4.4444444444444446],
[4.4444444444444446, 6.666666666666667],
[6.666666666666667, 8.8888888888888893],
[8.8888888888888893, 11.111111111111111],
[11.111111111111111, 13.333333333333332],
[13.333333333333332, 15.555555555555554],
[15.555555555555554, 17.777777777777775],
[17.777777777777775, 20]]
将我的列 'start' 更改为值 x
,其中 x
表示包含 df['start']
的区间的索引(所以 x
在我的例子中将从 0 到 8)
使用 pandas/numpy 是否有或多或少简单的方法?
提前,非常感谢您的帮助。
此致。
您可以使用 np.digitize
:
import numpy as np
import pandas as pd
df = pd.DataFrame(dict(start=np.random.random_integers(0, 20, 10000)))
# the left-hand edges of each "interval"
intervals = np.linspace(0, 20, 9, endpoint=False)
print(intervals)
# [ 0. 2.22222222 4.44444444 6.66666667 8.88888889
# 11.11111111 13.33333333 15.55555556 17.77777778]
df['start_idx'] = np.digitize(df['start'], intervals) - 1
print(df.head())
# start start_idx
# 0 8 3
# 1 16 7
# 2 0 0
# 3 7 3
# 4 0 0
我想从类别中生成 "category intervals"。 例如,假设我有以下内容:
>>> df['start'].describe()
count 259431.000000
mean 10.435858
std 5.504730
min 0.000000
25% 6.000000
50% 11.000000
75% 15.000000
max 20.000000
Name: start, dtype: float64
我的专栏的唯一值是:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20], dtype=int8)
但我想使用以下间隔列表:
>>> intervals
[[0, 2.2222222222222223],
[2.2222222222222223, 4.4444444444444446],
[4.4444444444444446, 6.666666666666667],
[6.666666666666667, 8.8888888888888893],
[8.8888888888888893, 11.111111111111111],
[11.111111111111111, 13.333333333333332],
[13.333333333333332, 15.555555555555554],
[15.555555555555554, 17.777777777777775],
[17.777777777777775, 20]]
将我的列 'start' 更改为值 x
,其中 x
表示包含 df['start']
的区间的索引(所以 x
在我的例子中将从 0 到 8)
使用 pandas/numpy 是否有或多或少简单的方法?
提前,非常感谢您的帮助。
此致。
您可以使用 np.digitize
:
import numpy as np
import pandas as pd
df = pd.DataFrame(dict(start=np.random.random_integers(0, 20, 10000)))
# the left-hand edges of each "interval"
intervals = np.linspace(0, 20, 9, endpoint=False)
print(intervals)
# [ 0. 2.22222222 4.44444444 6.66666667 8.88888889
# 11.11111111 13.33333333 15.55555556 17.77777778]
df['start_idx'] = np.digitize(df['start'], intervals) - 1
print(df.head())
# start start_idx
# 0 8 3
# 1 16 7
# 2 0 0
# 3 7 3
# 4 0 0