计算两个点阵列之间成对角度的矩阵

Compute matrix of pairwise angles between two arrays of points

我有两个点向量,xy,形状分别为 (n, p)(m, p)。例如:

x = np.array([[ 0.     , -0.16341,  0.98656],
              [-0.05937, -0.25205,  0.96589],
              [ 0.05937, -0.25205,  0.96589],
              [-0.11608, -0.33488,  0.93508],
              [ 0.     , -0.33416,  0.94252]])
y = np.array([[ 0.     , -0.36836,  0.92968],
              [-0.12103, -0.54558,  0.82928],
              [ 0.12103, -0.54558,  0.82928]])

我想计算一个 (n, m) 大小的矩阵,其中包含两点之间的角度,一个 this 问题。即,矢量化版本:

theta = np.array(
            [ np.arccos(np.dot(i, j) / (la.norm(i) * la.norm(j)))
                 for i in x for j in y ]
        ).reshape((n, m))

注意:nm 可以分别约为 10000。

有多种方法可以做到这一点:

import numpy.linalg as la
from scipy.spatial import distance as dist

# Manually
def method0(x, y):
    dotprod_mat = np.dot(x,  y.T)
    costheta = dotprod_mat / la.norm(x, axis=1)[:, np.newaxis]
    costheta /= la.norm(y, axis=1)
    return np.arccos(costheta)

# Using einsum
def method1(x, y):
    dotprod_mat = np.einsum('ij,kj->ik', x, y)
    costheta = dotprod_mat / la.norm(x, axis=1)[:, np.newaxis]
    costheta /= la.norm(y, axis=1)
    return np.arccos(costheta)

# Using scipy.spatial.cdist (one-liner)
def method2(x, y):
    costheta = 1 - dist.cdist(x, y, 'cosine')
    return np.arccos(costheta)

# Realize that your arrays `x` and `y` are already normalized, meaning you can
# optimize method1 even more
def method3(x, y):
    costheta = np.einsum('ij,kj->ik', x, y) # Directly gives costheta, since
                                            # ||x|| = ||y|| = 1
    return np.arccos(costheta)

(n, m) = (1212, 252) 的计时结果:

>>> %timeit theta = method0(x, y)
100 loops, best of 3: 11.1 ms per loop
>>> %timeit theta = method1(x, y)
100 loops, best of 3: 10.8 ms per loop
>>> %timeit theta = method2(x, y)
100 loops, best of 3: 12.3 ms per loop
>>> %timeit theta = method3(x, y)
100 loops, best of 3: 9.42 ms per loop

时间差异随着元素数量的增加而减少。对于 (n, m) = (6252, 1212):

>>> %timeit -n10 theta = method0(x, y)
10 loops, best of 3: 365 ms per loop
>>> %timeit -n10 theta = method1(x, y)
10 loops, best of 3: 358 ms per loop
>>> %timeit -n10 theta = method2(x, y)
10 loops, best of 3: 384 ms per loop
>>> %timeit -n10 theta = method3(x, y)
10 loops, best of 3: 314 ms per loop

但是,如果您省略了 np.arccos 这一步,即,假设您只需要 costheta 就可以处理,并且 不需要 theta本身,那么:

>>> %timeit costheta = np.einsum('ij,kj->ik', x, y)
10 loops, best of 3: 61.3 ms per loop
>>> %timeit costheta = 1 - dist.cdist(x, y, 'cosine')
10 loops, best of 3: 124 ms per loop
>>> %timeit costheta = dist.cdist(x, y, 'cosine')
10 loops, best of 3: 112 ms per loop

这是针对 (6252, 1212) 的情况。所以实际上 np.arccos 占用了 80% 的时间。在这种情况下,我发现 np.einsumdist.cdist 很多 。所以你肯定想使用 einsum.

总结: theta 的结果大体相似,但 np.einsum 对我来说是最快的,尤其是当你没有额外计算规范时。尽量避免计算 theta 并只使用 costheta.

注意:我没有提到的重要一点是 floating-point 精度的有限性会导致 np.arccos 给出 nan 值. method[0:3] 自然地为 xy 的值工作,这些值没有被正确规范化。但是method3给了几个nan。我用 pre-normalization 解决了这个问题,这自然会破坏使用 method3 的任何好处,除非您需要为一小组 pre-normalized 矩阵(无论出于何种原因)多次执行此计算。