为什么 boost::geometry 赤道周围的文森蒂地理距离不准确?
Why is boost::geometry geographic Vincenty distance inaccurate around the Equator?
我需要一个函数来计算一对 WGS 84 positions to a high degree of accuracy and I was planning to use the geographic
functions from boost geometry.
之间的距离
boost geometry Design Rational 状态:
There is the Andoyer method, fast and precise, and there is the Vincenty method, slower and more precise..
但是,当使用 Andoyer
和 Vincenty
策略测试 boost::geometry::distance
函数时,我得到了以下结果:
WGS 84 values (metres)
Semimajor axis: 6378137.000000
Flattening: 0.003353
Semiminor axis: 6356752.314245
Semimajor distance: 20037508.342789
Semiminor distance: 19970326.371123
Boost geometry near poles
Andoyer function:
Semimajor distance: 20037508.151445
Semiminor distance: 20003917.164970
Vincenty function:
Semimajor distance: **19970326.180419**
Semiminor distance: 20003931.266635
Boost geometry at poles
Andoyer function:
Semimajor distance: 0.000000
Semiminor distance: 0.000000
Vincenty function:
Semimajor distance: **19970326.371122**
Semiminor distance: 20003931.458623
Vincenty
沿半长轴(即赤道周围)的距离小于北极和南极之间的半短轴周围的距离。这不可能是正确的。
Semiminor 和 Andoyer
距离看起来合理。除非这些点位于地球的另一侧,当 boost
Andoyer
函数 returns 零!
问题出在:Vincenty
算法、它的 boost geometry
实现,还是我的测试代码?
测试代码:
/// boost geometry WGS84 distance issue
// Note: M_PI is not part of the C or C++ standards, _USE_MATH_DEFINES enables it
#define _USE_MATH_DEFINES
#include <boost/geometry.hpp>
#include <cmath>
#include <iostream>
#include <ios>
// WGS 84 parameters from: Eurocontrol WGS 84 Implementation Manual
// Version 2.4 Chapter 3, page 14
/// The Semimajor axis measured in metres.
/// This is the radius at the equator.
constexpr double a = 6378137.0;
/// Flattening, a ratio.
/// This is the flattening of the ellipse at the poles
constexpr double f = 1.0/298.257223563;
/// The Semiminor axis measured in metres.
/// This is the radius at the poles.
/// Note: this is derived from the Semimajor axis and the flattening.
/// See WGS 84 Implementation Manual equation B-2, page 69.
constexpr double b = a * (1.0 - f);
int main(int /*argc*/, char ** /*argv*/)
{
std::cout.setf(std::ios::fixed);
std::cout << "WGS 84 values (metres)\n";
std::cout << "\tSemimajor axis:\t\t" << a << "\n";
std::cout << "\tFlattening:\t\t" << f << "\n";
std::cout << "\tSemiminor axis:\t\t" << b << "\n\n";
std::cout << "\tSemimajor distance:\t" << M_PI * a << "\n";
std::cout << "\tSemiminor distance:\t" << M_PI * b << "\n";
std::cout << std::endl;
// Min value for delta. 0.000000014 causes Andoyer to fail.
const double DELTA(0.000000015);
// For boost::geometry:
typedef boost::geometry::cs::geographic<boost::geometry::radian> Wgs84Coords;
typedef boost::geometry::model::point<double, 2, Wgs84Coords> GeographicPoint;
// Note boost points are Long & Lat NOT Lat & Long
GeographicPoint near_north_pole (0.0, M_PI_2 - DELTA);
GeographicPoint near_south_pole (0.0, -M_PI_2 + DELTA);
GeographicPoint near_equator_east ( M_PI_2 - DELTA, 0.0);
GeographicPoint near_equator_west (-M_PI_2 + DELTA, 0.0);
// Note: the default boost geometry spheroid is WGS84
// #include <boost/geometry/core/srs.hpp>
typedef boost::geometry::srs::spheroid<double> SpheroidType;
SpheroidType spheriod;
//#include <boost/geometry/strategies/geographic/distance_andoyer.hpp>
typedef boost::geometry::strategy::distance::andoyer<SpheroidType>
AndoyerStrategy;
AndoyerStrategy andoyer(spheriod);
std::cout << "Boost geometry near poles\n";
std::cout << "Andoyer function:\n";
double andoyer_major(boost::geometry::distance(near_equator_east, near_equator_west, andoyer));
std::cout << "\tSemimajor distance:\t" << andoyer_major << "\n";
double andoyer_minor(boost::geometry::distance(near_north_pole, near_south_pole, andoyer));
std::cout << "\tSemiminor distance:\t" << andoyer_minor << "\n";
//#include <boost/geometry/strategies/geographic/distance_vincenty.hpp>
typedef boost::geometry::strategy::distance::vincenty<SpheroidType>
VincentyStrategy;
VincentyStrategy vincenty(spheriod);
std::cout << "Vincenty function:\n";
double vincenty_major(boost::geometry::distance(near_equator_east, near_equator_west, vincenty));
std::cout << "\tSemimajor distance:\t" << vincenty_major << "\n";
double vincenty_minor(boost::geometry::distance(near_north_pole, near_south_pole, vincenty));
std::cout << "\tSemiminor distance:\t" << vincenty_minor << "\n\n";
// Note boost points are Long & Lat NOT Lat & Long
GeographicPoint north_pole (0.0, M_PI_2);
GeographicPoint south_pole (0.0, -M_PI_2);
GeographicPoint equator_east ( M_PI_2, 0.0);
GeographicPoint equator_west (-M_PI_2, 0.0);
std::cout << "Boost geometry at poles\n";
std::cout << "Andoyer function:\n";
andoyer_major = boost::geometry::distance(equator_east, equator_west, andoyer);
std::cout << "\tSemimajor distance:\t" << andoyer_major << "\n";
andoyer_minor = boost::geometry::distance(north_pole, south_pole, andoyer);
std::cout << "\tSemiminor distance:\t" << andoyer_minor << "\n";
std::cout << "Vincenty function:\n";
vincenty_major = boost::geometry::distance(equator_east, equator_west, vincenty);
std::cout << "\tSemimajor distance:\t" << vincenty_major << "\n";
vincenty_minor = boost::geometry::distance(north_pole, south_pole, vincenty);
std::cout << "\tSemiminor distance:\t" << vincenty_minor << "\n";
return 0;
}
作为替代方案,请查看 Charles F. F. Karney 的 geographiclib。正如文档所说:"The emphasis is on returning accurate results with errors close to round-off (about 5–15 nanometers)."
我听从了@jwd630 的建议并查看了 geographiclib。
以下是结果:
WGS 84 values (metres)
Semimajor distance: 20037508.342789
Semiminor distance: 19970326.371123
GeographicLib near antipodal
Semimajor distance: 20003931.458625
Semiminor distance: 20003931.455275
GeographicLib antipodal
Semimajor distance: 20003931.458625
Semiminor distance: 20003931.458625
GeographicLib verify
JFK to LHR distance: 5551759.400319
即它为两极之间的半短距离(至 5dp)提供与 Vincenty 相同的距离,并计算赤道对映点的相同距离。
这是正确的,因为赤道对映点之间的最短距离是通过其中一个极点,而不是像默认提升 Andoyer
算法计算的那样围绕赤道。
所以@jwd630 上面的回答是正确的,在这三种算法中,geographiclib 是唯一一种计算整个 WGS84 大地水准面的正确距离的算法。
这里是测试代码:
/// GeographicLib WGS84 distance
// Note: M_PI is not part of the C or C++ standards, _USE_MATH_DEFINES enables it
#define _USE_MATH_DEFINES
#include <GeographicLib/Geodesic.hpp>
#include <cmath>
#include <iostream>
#include <ios>
// WGS 84 parameters from: Eurocontrol WGS 84 Implementation Manual
// Version 2.4 Chapter 3, page 14
/// The Semimajor axis measured in metres.
/// This is the radius at the equator.
constexpr double a = 6378137.0;
/// Flattening, a ratio.
/// This is the flattening of the ellipse at the poles
constexpr double f = 1.0/298.257223563;
/// The Semiminor axis measured in metres.
/// This is the radius at the poles.
/// Note: this is derived from the Semimajor axis and the flattening.
/// See WGS 84 Implementation Manual equation B-2, page 69.
constexpr double b = a * (1.0 - f);
int main(int /*argc*/, char ** /*argv*/)
{
const GeographicLib::Geodesic& geod(GeographicLib::Geodesic::WGS84());
std::cout.setf(std::ios::fixed);
std::cout << "WGS 84 values (metres)\n";
std::cout << "\tSemimajor axis:\t\t" << a << "\n";
std::cout << "\tFlattening:\t\t" << f << "\n";
std::cout << "\tSemiminor axis:\t\t" << b << "\n\n";
std::cout << "\tSemimajor distance:\t" << M_PI * a << "\n";
std::cout << "\tSemiminor distance:\t" << M_PI * b << "\n";
std::cout << std::endl;
// Min value for delta. 0.000000014 causes boost Andoyer to fail.
const double DELTA(0.000000015);
std::pair<double, double> near_equator_east (0.0, 90.0 - DELTA);
std::pair<double, double> near_equator_west (0.0, -90.0 + DELTA);
std::cout << "GeographicLib near antipodal\n";
double distance_metres(0.0);
geod.Inverse(near_equator_east.first, near_equator_east.second,
near_equator_west.first, near_equator_west.second, distance_metres);
std::cout << "\tSemimajor distance:\t" << distance_metres << "\n";
std::pair<double, double> near_north_pole (90.0 - DELTA, 0.0);
std::pair<double, double> near_south_pole (-90.0 + DELTA, 0.0);
geod.Inverse(near_north_pole.first, near_north_pole.second,
near_south_pole.first, near_south_pole.second, distance_metres);
std::cout << "\tSemiminor distance:\t" << distance_metres << "\n\n";
std::pair<double, double> equator_east (0.0, 90.0);
std::pair<double, double> equator_west (0.0, -90.0);
std::cout << "GeographicLib antipodal\n";
geod.Inverse(equator_east.first, equator_east.second,
equator_west.first, equator_west.second, distance_metres);
std::cout << "\tSemimajor distance:\t" << distance_metres << "\n";
std::pair<double, double> north_pole (90.0, 0.0);
std::pair<double, double> south_pole (-90.0, 0.0);
geod.Inverse(north_pole.first, north_pole.second,
south_pole.first, south_pole.second, distance_metres);
std::cout << "\tSemiminor distance:\t" << distance_metres << "\n\n";
std::pair<double, double> JFK (40.6, -73.8);
std::pair<double, double> LHR (51.6, -0.5);
std::cout << "GeographicLib verify distance\n";
geod.Inverse(JFK.first, JFK.second,
LHR.first, LHR.second, distance_metres);
std::cout << "\tJFK to LHR distance:\t" << distance_metres << std::endl;
return 0;
}
在他的论文中Algorithms for geodesics,
Charles F. F. Karney 指出 "Vincenty’s method fails to converge for nearly antipodal points"。
这可能会回答我原来的问题,即 Vincenty
算法不适合对映点。
注意:我提出了 boost
票 #11817 描述了问题所在
Andoyer
算法 returns 对映点为零,并向 boost
发送了一个拉取请求并对其进行了修复。
但是,对于错误距离的唯一正确修复是使用正确的算法,即:geographiclib
非常感谢 Charles F. F. Karney (@cffk) 礼貌地指出我的愚蠢错误!
我需要一个函数来计算一对 WGS 84 positions to a high degree of accuracy and I was planning to use the geographic
functions from boost geometry.
boost geometry Design Rational 状态:
There is the Andoyer method, fast and precise, and there is the Vincenty method, slower and more precise..
但是,当使用 Andoyer
和 Vincenty
策略测试 boost::geometry::distance
函数时,我得到了以下结果:
WGS 84 values (metres)
Semimajor axis: 6378137.000000
Flattening: 0.003353
Semiminor axis: 6356752.314245
Semimajor distance: 20037508.342789
Semiminor distance: 19970326.371123
Boost geometry near poles
Andoyer function:
Semimajor distance: 20037508.151445
Semiminor distance: 20003917.164970
Vincenty function:
Semimajor distance: **19970326.180419**
Semiminor distance: 20003931.266635
Boost geometry at poles
Andoyer function:
Semimajor distance: 0.000000
Semiminor distance: 0.000000
Vincenty function:
Semimajor distance: **19970326.371122**
Semiminor distance: 20003931.458623
Vincenty
沿半长轴(即赤道周围)的距离小于北极和南极之间的半短轴周围的距离。这不可能是正确的。
Semiminor 和 Andoyer
距离看起来合理。除非这些点位于地球的另一侧,当 boost
Andoyer
函数 returns 零!
问题出在:Vincenty
算法、它的 boost geometry
实现,还是我的测试代码?
测试代码:
/// boost geometry WGS84 distance issue
// Note: M_PI is not part of the C or C++ standards, _USE_MATH_DEFINES enables it
#define _USE_MATH_DEFINES
#include <boost/geometry.hpp>
#include <cmath>
#include <iostream>
#include <ios>
// WGS 84 parameters from: Eurocontrol WGS 84 Implementation Manual
// Version 2.4 Chapter 3, page 14
/// The Semimajor axis measured in metres.
/// This is the radius at the equator.
constexpr double a = 6378137.0;
/// Flattening, a ratio.
/// This is the flattening of the ellipse at the poles
constexpr double f = 1.0/298.257223563;
/// The Semiminor axis measured in metres.
/// This is the radius at the poles.
/// Note: this is derived from the Semimajor axis and the flattening.
/// See WGS 84 Implementation Manual equation B-2, page 69.
constexpr double b = a * (1.0 - f);
int main(int /*argc*/, char ** /*argv*/)
{
std::cout.setf(std::ios::fixed);
std::cout << "WGS 84 values (metres)\n";
std::cout << "\tSemimajor axis:\t\t" << a << "\n";
std::cout << "\tFlattening:\t\t" << f << "\n";
std::cout << "\tSemiminor axis:\t\t" << b << "\n\n";
std::cout << "\tSemimajor distance:\t" << M_PI * a << "\n";
std::cout << "\tSemiminor distance:\t" << M_PI * b << "\n";
std::cout << std::endl;
// Min value for delta. 0.000000014 causes Andoyer to fail.
const double DELTA(0.000000015);
// For boost::geometry:
typedef boost::geometry::cs::geographic<boost::geometry::radian> Wgs84Coords;
typedef boost::geometry::model::point<double, 2, Wgs84Coords> GeographicPoint;
// Note boost points are Long & Lat NOT Lat & Long
GeographicPoint near_north_pole (0.0, M_PI_2 - DELTA);
GeographicPoint near_south_pole (0.0, -M_PI_2 + DELTA);
GeographicPoint near_equator_east ( M_PI_2 - DELTA, 0.0);
GeographicPoint near_equator_west (-M_PI_2 + DELTA, 0.0);
// Note: the default boost geometry spheroid is WGS84
// #include <boost/geometry/core/srs.hpp>
typedef boost::geometry::srs::spheroid<double> SpheroidType;
SpheroidType spheriod;
//#include <boost/geometry/strategies/geographic/distance_andoyer.hpp>
typedef boost::geometry::strategy::distance::andoyer<SpheroidType>
AndoyerStrategy;
AndoyerStrategy andoyer(spheriod);
std::cout << "Boost geometry near poles\n";
std::cout << "Andoyer function:\n";
double andoyer_major(boost::geometry::distance(near_equator_east, near_equator_west, andoyer));
std::cout << "\tSemimajor distance:\t" << andoyer_major << "\n";
double andoyer_minor(boost::geometry::distance(near_north_pole, near_south_pole, andoyer));
std::cout << "\tSemiminor distance:\t" << andoyer_minor << "\n";
//#include <boost/geometry/strategies/geographic/distance_vincenty.hpp>
typedef boost::geometry::strategy::distance::vincenty<SpheroidType>
VincentyStrategy;
VincentyStrategy vincenty(spheriod);
std::cout << "Vincenty function:\n";
double vincenty_major(boost::geometry::distance(near_equator_east, near_equator_west, vincenty));
std::cout << "\tSemimajor distance:\t" << vincenty_major << "\n";
double vincenty_minor(boost::geometry::distance(near_north_pole, near_south_pole, vincenty));
std::cout << "\tSemiminor distance:\t" << vincenty_minor << "\n\n";
// Note boost points are Long & Lat NOT Lat & Long
GeographicPoint north_pole (0.0, M_PI_2);
GeographicPoint south_pole (0.0, -M_PI_2);
GeographicPoint equator_east ( M_PI_2, 0.0);
GeographicPoint equator_west (-M_PI_2, 0.0);
std::cout << "Boost geometry at poles\n";
std::cout << "Andoyer function:\n";
andoyer_major = boost::geometry::distance(equator_east, equator_west, andoyer);
std::cout << "\tSemimajor distance:\t" << andoyer_major << "\n";
andoyer_minor = boost::geometry::distance(north_pole, south_pole, andoyer);
std::cout << "\tSemiminor distance:\t" << andoyer_minor << "\n";
std::cout << "Vincenty function:\n";
vincenty_major = boost::geometry::distance(equator_east, equator_west, vincenty);
std::cout << "\tSemimajor distance:\t" << vincenty_major << "\n";
vincenty_minor = boost::geometry::distance(north_pole, south_pole, vincenty);
std::cout << "\tSemiminor distance:\t" << vincenty_minor << "\n";
return 0;
}
作为替代方案,请查看 Charles F. F. Karney 的 geographiclib。正如文档所说:"The emphasis is on returning accurate results with errors close to round-off (about 5–15 nanometers)."
我听从了@jwd630 的建议并查看了 geographiclib。
以下是结果:
WGS 84 values (metres)
Semimajor distance: 20037508.342789
Semiminor distance: 19970326.371123
GeographicLib near antipodal
Semimajor distance: 20003931.458625
Semiminor distance: 20003931.455275
GeographicLib antipodal
Semimajor distance: 20003931.458625
Semiminor distance: 20003931.458625
GeographicLib verify
JFK to LHR distance: 5551759.400319
即它为两极之间的半短距离(至 5dp)提供与 Vincenty 相同的距离,并计算赤道对映点的相同距离。
这是正确的,因为赤道对映点之间的最短距离是通过其中一个极点,而不是像默认提升 Andoyer
算法计算的那样围绕赤道。
所以@jwd630 上面的回答是正确的,在这三种算法中,geographiclib 是唯一一种计算整个 WGS84 大地水准面的正确距离的算法。
这里是测试代码:
/// GeographicLib WGS84 distance
// Note: M_PI is not part of the C or C++ standards, _USE_MATH_DEFINES enables it
#define _USE_MATH_DEFINES
#include <GeographicLib/Geodesic.hpp>
#include <cmath>
#include <iostream>
#include <ios>
// WGS 84 parameters from: Eurocontrol WGS 84 Implementation Manual
// Version 2.4 Chapter 3, page 14
/// The Semimajor axis measured in metres.
/// This is the radius at the equator.
constexpr double a = 6378137.0;
/// Flattening, a ratio.
/// This is the flattening of the ellipse at the poles
constexpr double f = 1.0/298.257223563;
/// The Semiminor axis measured in metres.
/// This is the radius at the poles.
/// Note: this is derived from the Semimajor axis and the flattening.
/// See WGS 84 Implementation Manual equation B-2, page 69.
constexpr double b = a * (1.0 - f);
int main(int /*argc*/, char ** /*argv*/)
{
const GeographicLib::Geodesic& geod(GeographicLib::Geodesic::WGS84());
std::cout.setf(std::ios::fixed);
std::cout << "WGS 84 values (metres)\n";
std::cout << "\tSemimajor axis:\t\t" << a << "\n";
std::cout << "\tFlattening:\t\t" << f << "\n";
std::cout << "\tSemiminor axis:\t\t" << b << "\n\n";
std::cout << "\tSemimajor distance:\t" << M_PI * a << "\n";
std::cout << "\tSemiminor distance:\t" << M_PI * b << "\n";
std::cout << std::endl;
// Min value for delta. 0.000000014 causes boost Andoyer to fail.
const double DELTA(0.000000015);
std::pair<double, double> near_equator_east (0.0, 90.0 - DELTA);
std::pair<double, double> near_equator_west (0.0, -90.0 + DELTA);
std::cout << "GeographicLib near antipodal\n";
double distance_metres(0.0);
geod.Inverse(near_equator_east.first, near_equator_east.second,
near_equator_west.first, near_equator_west.second, distance_metres);
std::cout << "\tSemimajor distance:\t" << distance_metres << "\n";
std::pair<double, double> near_north_pole (90.0 - DELTA, 0.0);
std::pair<double, double> near_south_pole (-90.0 + DELTA, 0.0);
geod.Inverse(near_north_pole.first, near_north_pole.second,
near_south_pole.first, near_south_pole.second, distance_metres);
std::cout << "\tSemiminor distance:\t" << distance_metres << "\n\n";
std::pair<double, double> equator_east (0.0, 90.0);
std::pair<double, double> equator_west (0.0, -90.0);
std::cout << "GeographicLib antipodal\n";
geod.Inverse(equator_east.first, equator_east.second,
equator_west.first, equator_west.second, distance_metres);
std::cout << "\tSemimajor distance:\t" << distance_metres << "\n";
std::pair<double, double> north_pole (90.0, 0.0);
std::pair<double, double> south_pole (-90.0, 0.0);
geod.Inverse(north_pole.first, north_pole.second,
south_pole.first, south_pole.second, distance_metres);
std::cout << "\tSemiminor distance:\t" << distance_metres << "\n\n";
std::pair<double, double> JFK (40.6, -73.8);
std::pair<double, double> LHR (51.6, -0.5);
std::cout << "GeographicLib verify distance\n";
geod.Inverse(JFK.first, JFK.second,
LHR.first, LHR.second, distance_metres);
std::cout << "\tJFK to LHR distance:\t" << distance_metres << std::endl;
return 0;
}
在他的论文中Algorithms for geodesics,
Charles F. F. Karney 指出 "Vincenty’s method fails to converge for nearly antipodal points"。
这可能会回答我原来的问题,即 Vincenty
算法不适合对映点。
注意:我提出了 boost
票 #11817 描述了问题所在
Andoyer
算法 returns 对映点为零,并向 boost
发送了一个拉取请求并对其进行了修复。
但是,对于错误距离的唯一正确修复是使用正确的算法,即:geographiclib
非常感谢 Charles F. F. Karney (@cffk) 礼貌地指出我的愚蠢错误!