(log n)/ (log(log n)) 的顺序是什么?

What is the order of (log n)/ (log(log n))?

f=(log n)/ (log(log n))的顺序是什么?

f= O(log n)吗?这是为什么?

h=(log n) * (log log n)的顺序是什么?

难道也是h= O(log n)?为什么是正确的?

  1. Is f= O(log n)?

  2. Is it also h= O(log n)?

    没有

证明:

使用正式定义:

f(n) = O(g(n)) means there are positive constants c and n0, such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. The values of c and n0 must be fixed for the function f and must not depend on n.

  1. f = O(logn) <=> (log n)/ (log(log n)) = O(logn)

    因此,您需要找到 cn0,使得所有 n ≥ n00 ≤ (log n)/ (log(log n)) ≤ c*logn。假设对数的底数是b(其实无所谓,可以考虑b in {2,e,10})。如果您选择 c=1n0=b^b^2,则所有 n ≥ b^b^2 都选择 0 ≤ (log n)/ (log(log n)) ≤ logn

    • 第一部分是正确的,因为 log n ≥ log b^b^2 = b^2 ≥ 0log(log n) ≥ log(log b^b^2) = 2 ≥ 0
    • 第二部分也是如此,因为变成了log(log n) ≥ 1log(log n) ≥ log(b^2) = 2 ≥ 1.
  2. 与第一个证明类似,需要证明不能选择cn0使得(log n) * (log(log n)) ≤ c*logn对所有n ≥ n0。对于大 n,它变成 (log(log n)) ≤ c,因为 log n 不能是 0。很明显,您不能选择 c,因为它不适用于 n > b^b^c