Python 代码冻结了我的电脑 - Project Euler 58
Python code freezes up my computer - Project Euler 58
我正在尝试通过解决 Project Euler 中的问题来学习 python。我卡在问题 58 上了。问题是这样的:
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.
37 36 35 34 33 32 31
38 17 16 15 14 13 30
39 18 5 4 3 12 29
40 19 6 1 2 11 28
41 20 7 8 9 10 27
42 21 22 23 24 25 26
43 44 45 46 47 48 49
It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%.
If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%?
这是我为解决这个问题而写的代码。我使用质数筛检查质数,但我不知道将质数筛设置到什么极限。所以我让代码告诉我什么时候需要增加限制。代码在 limit=10^8 时运行良好,但是当我将它设置为 10^9 时,代码冻结了我的 PC,我必须重新启动。不知道我做错了什么。如果您需要更多信息,请告诉我。谢谢!
def primesieve(limit):
primelist=[]
for i in xrange(limit):
primelist.append(i)
primelist[1]=0
for i in xrange(2,limit):
if primelist[i]>0:
ctr=2
while (primelist[i]*ctr<limit):
a=primelist[i]*ctr
primelist[a]=0
ctr+=1
primelist=filter(lambda x: x!=0, primelist)
return primelist
limit=10**7
plist=primesieve(limit)
pset=set(plist)
diagnumbers=5.0
primenumbers=3.0
sidelength=3
lastnumber=9
while (primenumbers/diagnumbers)>=0.1:
sidelength+=2
for i in range(3):
lastnumber+=(sidelength-1)
if lastnumber in pset:
primenumbers+=1
diagnumbers+=4
lastnumber+=(sidelength-1)
if lastnumber>plist[-1]:
print lastnumber,"Need to increase limit"
break
print "sidelength",sidelength," last number",lastnumber,(primenumbers/diagnumbers)
即使您使用的是 xrange,您在制作 primesieve 时仍会生成大小为 10**9 的列表。这会占用大量内存,可能是您的问题。
相反,您可以考虑编写一个函数来检查数字 N 是否为质数,方法是检查 (2,N**.5) 之间的任何数字是否均分。然后,您可以着手生成角编号并执行素性测试。
您可以采取以下措施来提高素数生成器的效率:
def primesieve(limit):
primelist=[]
# Don't create a list of all your numbers up front.
# And even if you do, at least skip the even numbers!
#for i in xrange(limit):
# primelist.append(i)
# Skip counting - no even number > 3 is prime!
for i in xrange(3, limit, 2):
# You only need to check up to the square root of a number:
# I *thought* that there was some rule that stated that a number
# was prime if it was not divisible by all primes less than it,
# but I couldn't find that for certain. That would make this go
# a lot faster if you only had to check primes and numbers greater
# than the greatest prime found so far up to the square root of
# the number
for divisor in xrange(3, int(i**0.5)+1, 2):
if not i % divisor: # no remainder, so sad
break
else:
# loop exited naturally, number has no divisors hooray!
primelist.append(i)
# Need to put the number 2 back, though
primelist.insert(0, 2)
return primelist
这使用了我的 CPU 中的 混乱 (100% 或更多,万岁!)但几乎不使用任何内存(例如,几 MB RAM x 7分钟)。我的 CPU 只有 2.something GHz,到目前为止 10**8
花了 7 多分钟作为最大质数。
如果您查看我在评论中链接的 post,可以找到一些更好的生成素数的方法,但这些只是一些简单的改进。
我正在尝试通过解决 Project Euler 中的问题来学习 python。我卡在问题 58 上了。问题是这样的:
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.
37 36 35 34 33 32 31
38 17 16 15 14 13 30
39 18 5 4 3 12 29
40 19 6 1 2 11 28
41 20 7 8 9 10 27
42 21 22 23 24 25 26
43 44 45 46 47 48 49
It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%.
If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%?
这是我为解决这个问题而写的代码。我使用质数筛检查质数,但我不知道将质数筛设置到什么极限。所以我让代码告诉我什么时候需要增加限制。代码在 limit=10^8 时运行良好,但是当我将它设置为 10^9 时,代码冻结了我的 PC,我必须重新启动。不知道我做错了什么。如果您需要更多信息,请告诉我。谢谢!
def primesieve(limit):
primelist=[]
for i in xrange(limit):
primelist.append(i)
primelist[1]=0
for i in xrange(2,limit):
if primelist[i]>0:
ctr=2
while (primelist[i]*ctr<limit):
a=primelist[i]*ctr
primelist[a]=0
ctr+=1
primelist=filter(lambda x: x!=0, primelist)
return primelist
limit=10**7
plist=primesieve(limit)
pset=set(plist)
diagnumbers=5.0
primenumbers=3.0
sidelength=3
lastnumber=9
while (primenumbers/diagnumbers)>=0.1:
sidelength+=2
for i in range(3):
lastnumber+=(sidelength-1)
if lastnumber in pset:
primenumbers+=1
diagnumbers+=4
lastnumber+=(sidelength-1)
if lastnumber>plist[-1]:
print lastnumber,"Need to increase limit"
break
print "sidelength",sidelength," last number",lastnumber,(primenumbers/diagnumbers)
即使您使用的是 xrange,您在制作 primesieve 时仍会生成大小为 10**9 的列表。这会占用大量内存,可能是您的问题。
相反,您可以考虑编写一个函数来检查数字 N 是否为质数,方法是检查 (2,N**.5) 之间的任何数字是否均分。然后,您可以着手生成角编号并执行素性测试。
您可以采取以下措施来提高素数生成器的效率:
def primesieve(limit):
primelist=[]
# Don't create a list of all your numbers up front.
# And even if you do, at least skip the even numbers!
#for i in xrange(limit):
# primelist.append(i)
# Skip counting - no even number > 3 is prime!
for i in xrange(3, limit, 2):
# You only need to check up to the square root of a number:
# I *thought* that there was some rule that stated that a number
# was prime if it was not divisible by all primes less than it,
# but I couldn't find that for certain. That would make this go
# a lot faster if you only had to check primes and numbers greater
# than the greatest prime found so far up to the square root of
# the number
for divisor in xrange(3, int(i**0.5)+1, 2):
if not i % divisor: # no remainder, so sad
break
else:
# loop exited naturally, number has no divisors hooray!
primelist.append(i)
# Need to put the number 2 back, though
primelist.insert(0, 2)
return primelist
这使用了我的 CPU 中的 混乱 (100% 或更多,万岁!)但几乎不使用任何内存(例如,几 MB RAM x 7分钟)。我的 CPU 只有 2.something GHz,到目前为止 10**8
花了 7 多分钟作为最大质数。
如果您查看我在评论中链接的 post,可以找到一些更好的生成素数的方法,但这些只是一些简单的改进。