在 PyMC3 中使用复杂的可能性

Using a complex likelihood in PyMC3

pymc.__version__ = '3.0'  
theano.__version__ = '0.6.0.dev-RELEASE'

我正在尝试使用具有复杂似然函数的 PyMC3:

第一个问题:这可能吗?

这是我使用 Thomas Wiecki's post 作为指导的尝试:

import numpy as np
import theano as th
import pymc as pm
import scipy as sp

# Actual data I'm trying to fit
x = np.array([52.08, 58.44, 60.0, 65.0, 65.10, 66.0, 70.0, 87.5, 110.0, 126.0])
y = np.array([0.522, 0.659, 0.462, 0.720, 0.609, 0.696, 0.667, 0.870, 0.889,  0.919])
yerr = np.array([0.104,  0.071,  0.138,  0.035,  0.102, 0.096,  0.136,  0.031, 0.024, 0.035])

th.config.compute_test_value = 'off'
a = th.tensor.dscalar('a')

with pm.Model() as model:
    # Priors
    alpha = pm.Normal('alpha', mu=0.3, sd=5)
    sig_alpha = pm.Normal('sig_alpha', mu=0.03, sd=5)
    t_double = pm.Normal('t_double', mu=4, sd=20)
    t_delay = pm.Normal('t_delay', mu=21, sd=20)
    nu = pm.Uniform('nu', lower=0, upper=20)

    # Some functions needed for calculation of the y estimator
    def T(eqd):
        doses = np.array([52.08, 58.44, 60.0, 65.0, 65.10, 
                          66.0, 70.0, 87.5, 110.0, 126.0])
        tmt_times = np.array([29,29,43,29,36,48,22,11,7,8])
        return np.interp(eqd, doses, tmt_times)

    def TCP(a):
        time = T(x)
        BCP = pm.exp(-1E7*pm.exp(-alpha*x*1.2 + 0.69315/t_delay(time-t_double)))
        return pm.prod(BCP)

    def normpdf(a, alpha, sig_alpha):
        return 1./(sig_alpha*pm.sqrt(2.*np.pi))*pm.exp(-pm.sqr(a-alpha)/(2*pm.sqr(sig_alpha)))

    def normcdf(a, alpha, sig_alpha):
        return 1./2.*(1+pm.erf((a-alpha)/(sig_alpha*pm.sqrt(2))))

    def integrand(a):
        return normpdf(a,alpha,sig_alpha)/(1.-normcdf(0,alpha,sig_alpha))*TCP(a)

    func = th.function([a,alpha,sig_alpha,t_double,t_delay], integrand(a))

    y_est = sp.integrate.quad(func(a, alpha, sig_alpha,t_double,t_delay), 0, np.inf)[0]

    likelihood = pm.T('TCP', mu=y_est, nu=nu, observed=y_tcp)

    start = pm.find_MAP()
    step = pm.NUTS(state=start)
    trace = pm.sample(2000, step, start=start, progressbar=True) 

生成以下关于 y_est 表达式的消息:

TypeError: ('Bad input argument to theano function with name ":42" at index 0(0-based)', 'Expected an array-like object, but found a Variable: maybe you are trying to call a function on a (possibly shared) variable instead of a numeric array?')

我克服了各种其他障碍才走到这一步,这就是我被困的地方。那么,如果我的第一个问题的答案是 'yes',那么我走对了吗?任何指导都会有所帮助!

N.B。这是一个similar question I found, and another.

免责声明:我对此很陌生。我之前唯一的经验是成功重现 Thomas post 中的线性回归示例。我也成功地 运行 Theano 测试套件,所以我知道它有效。

是的,有可能做出具有复杂或任意可能性的东西。虽然这看起来不像你在这里做的。看起来你有一个从一个变量到另一个变量的复杂转换,即积分步骤。

您的特殊例外是 integrate.quad 需要一个 numpy 数组,而不是 pymc Variable。如果你想在 pymc 中做四边形,你必须 make a custom theano Op (with derivative) for it.