运行 Android 服务中的 OpenCV 眼睛检测

Running OpenCV eye detection from within Android service

我想 运行 通过 OpenCV4Android 从 Android 后台服务进行眼睛检测。我有一段代码 运行 很好,但作为 Activity 不是服务。我知道 Android 相机必须有预览才能打开。所以我创建了一个预览(小的让它看起来隐藏起来,因为我希望处理在后台进行)并启动相机进行录制。相机成功启动,但 OpenCV 未检测到眼睛和面部。它只加载 xml 个分类器。当我打开相机进行录制时,我希望像 onCameraViewStartedonCameraFrame 这样的 OpenCV 回调会被调用,但它们没有。

代码如下:

public class BackgroundService extends Service implements SurfaceHolder.Callback, CameraBridgeViewBase.CvCameraViewListener2 {

    private static final String TAG = "OCVSample::Activity";
    private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
    public static final int JAVA_DETECTOR = 0;
    private static final int TM_SQDIFF = 0;
    private static final int TM_SQDIFF_NORMED = 1;
    private static final int TM_CCOEFF = 2;
    private static final int TM_CCOEFF_NORMED = 3;
    private static final int TM_CCORR = 4;
    private static final int TM_CCORR_NORMED = 5;


    private int learn_frames = 0;
    private Mat templateR;//right eye template
    private Mat templateL; // left eye template
    int method = 0;

    private MenuItem mItemFace50;
    private MenuItem mItemFace40;
    private MenuItem mItemFace30;
    private MenuItem mItemFace20;
    private MenuItem mItemType;

    private Mat mRgba;
    private Mat mGray;
    // matrix for zooming
    private Mat mZoomWindow;
    private Mat mZoomWindow2;

    private File mCascadeFile;
    private CascadeClassifier mJavaDetector;
    private CascadeClassifier mJavaDetectorEye;


    private int mDetectorType = JAVA_DETECTOR;
    private String[] mDetectorName;

    private float mRelativeFaceSize = 0.2f;
    private int mAbsoluteFaceSize = 0;

    private CameraBridgeViewBase mOpenCvCameraView;

    private SeekBar mMethodSeekbar;
    private TextView mValue;

    double xCenter = -1;
    double yCenter = -1;

    MediaRecorder mediaRecorder;
    // Binder given to clients
    private final IBinder mBinder = new LocalBinder();

    public class LocalBinder extends Binder {
        BackgroundService getService() {
            // Return this instance of this service so clients can call public methods
            return BackgroundService.this;
        }
    }//end inner class that returns an instance of the service.

        @Override
        public IBinder onBind(Intent intent) {

            return mBinder;
        }//end onBind.


    private WindowManager windowManager;
    private SurfaceView surfaceView;
    private Camera camera = null;

    @Override
    public void onCreate() {


        // Start foreground service to avoid unexpected kill
        Notification notification = new Notification.Builder(this)
                .setContentTitle("Background Video Recorder")
                .setContentText("")
                .setSmallIcon(R.drawable.vecsat_logo)
                .build();
        startForeground(1234, notification);

        // Create new SurfaceView, set its size to 1x1, move it to the top left corner and set this service as a callback
        windowManager = (WindowManager) this.getSystemService(Context.WINDOW_SERVICE);
        surfaceView = new SurfaceView(this);
        WindowManager.LayoutParams layoutParams = new WindowManager.LayoutParams(
                100, 100,
                WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
                WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH,
                PixelFormat.TRANSLUCENT
        );

        Log.i(TAG, "100 x 100 executed");

        layoutParams.gravity = Gravity.LEFT | Gravity.TOP;
        windowManager.addView(surfaceView, layoutParams);
        surfaceView.getHolder().addCallback(this);


        //constructor:
        mDetectorName = new String[2];// contains 3 positions..
        mDetectorName[JAVA_DETECTOR] = "Java"; //let the detector be of type java detector, specify that in the JAVA_DETECTOR index.

        Log.i(TAG, "Instantiated new " + ((Object) this).getClass().getSimpleName());

        OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_11, this,
                mLoaderCallback); //once the application is resumed reload the library.

    }

    // Method called right after Surface created (initializing and starting MediaRecorder)
    @Override
    public void surfaceCreated(SurfaceHolder surfaceHolder) {

        Log.i(TAG, "surfaceCreated method");

        camera = Camera.open(1);
        camera.unlock();


       mediaRecorder = new MediaRecorder();



        mediaRecorder.setPreviewDisplay(surfaceHolder.getSurface());
        mediaRecorder.setCamera(camera);
        mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
        mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
        mediaRecorder.setProfile(CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH));

       mediaRecorder.setOutputFile(
                Environment.getExternalStorageDirectory()+"/"+
                        DateFormat.format("yyyy-MM-dd_kk-mm-ss", new Date().getTime())+
                        ".mp4"
        );

        try { mediaRecorder.prepare(); } catch (Exception e) {}
        mediaRecorder.start();


    }


    // Stop recording and remove SurfaceView
    @Override
    public void onDestroy() {

        Log.i(TAG, "surfaceDestroyed method");

        camera.lock();
        camera.release();

        windowManager.removeView(surfaceView);

    }

    @Override
    public void surfaceChanged(SurfaceHolder surfaceHolder, int format, int width, int height) {}

    @Override
    public void surfaceDestroyed(SurfaceHolder surfaceHolder) {


    }

    private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
        @Override
        public void onManagerConnected(int status) {
            //int status, status of initialization, sucess or not..
            //now make a switch for the status cases: under success case do the work, load the classifiers..

            switch (status) {
                case LoaderCallbackInterface.SUCCESS: {
                    Log.i(TAG, "OpenCV loaded successfully"); // was loaded and initialized successfully..

                    try {
                        // load cascade file from application resources
                        InputStream is = getResources().openRawResource(
                                R.raw.lbpcascade_frontalface); // get the face classifier from the resource.
                        File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
                        mCascadeFile = new File(cascadeDir,
                                "lbpcascade_frontalface.xml"); // create a directory inside your app, and a file inside it to store the
                        FileOutputStream os = new FileOutputStream(mCascadeFile); // prepare an output stream that will write the classifier's code on the file in the app.

                        //read and write
                        byte[] buffer = new byte[4096];
                        int bytesRead;
                        while ((bytesRead = is.read(buffer)) != -1) {
                            os.write(buffer, 0, bytesRead);
                        }
                        is.close();
                        os.close();

                        // --------------------------------- load left eye
                        // classificator -----------------------------------
                        InputStream iser = getResources().openRawResource(
                                R.raw.haarcascade_lefteye_2splits);
                        File cascadeDirER = getDir("cascadeER",
                                Context.MODE_PRIVATE);
                        File cascadeFileER = new File(cascadeDirER,
                                "haarcascade_eye_right.xml");
                        FileOutputStream oser = new FileOutputStream(cascadeFileER);

                        byte[] bufferER = new byte[4096];
                        int bytesReadER;
                        while ((bytesReadER = iser.read(bufferER)) != -1) {
                            oser.write(bufferER, 0, bytesReadER);
                        }
                        iser.close();
                        oser.close();

                        //check if you can load the classifer.
                        mJavaDetector = new CascadeClassifier(
                                mCascadeFile.getAbsolutePath());
                        if (mJavaDetector.empty()) {
                            Toast.makeText(getApplicationContext(), "face classifier error", Toast.LENGTH_LONG).show();
                            Log.e(TAG, "Failed to load cascade face classifier");
                            mJavaDetector = null;
                        } else
                            Log.i(TAG, "Loaded cascade classifier from "
                                    + mCascadeFile.getAbsolutePath());

                        mJavaDetectorEye = new CascadeClassifier(
                                cascadeFileER.getAbsolutePath());
                        if (mJavaDetectorEye.empty()) {
                            Toast.makeText(getApplicationContext(), "eye classifer error", Toast.LENGTH_LONG).show();
                            Log.e(TAG, "Failed to load cascade eye classifier");
                            mJavaDetectorEye = null;
                        } else
                            Log.i(TAG, "Loaded cascade classifier from "
                                    + mCascadeFile.getAbsolutePath());



                        cascadeDir.delete();

                    } catch (IOException e) {
                        e.printStackTrace();
                        Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
                    }

                    //Whether classifiers are opened or not, open the front camera.
                   // mOpenCvCameraView.setCameraIndex(1);
                    //mOpenCvCameraView.enableFpsMeter(); // What is this? This method enables label with fps value on the screen
                   // mOpenCvCameraView.enableView(); // What? This means enable connecting to the camera.

                }
                break;
                default: {
                    //When the loading of the libarary is failed
                    super.onManagerConnected(status);
                }
                break;
            }
        }
    }; // end the class.



    public void onCameraViewStarted(int width, int height) {
        Log.i(TAG, "onCameraViewStarted method");


        //onCameraViewStarted callback will be delivered only after enableView is called and  surface is available
        //This method is a member of CvCameraViewListener2, and we must implement it.
        mGray = new Mat(); //initialize new gray scale matrix to contain the img pixels.
        mRgba = new Mat(); //initialize new rgb matrix to contain the img pixels.
    }

    public void onCameraViewStopped() {
        Log.i(TAG, "onCameraViewStopped method");


        //Release the allocated memory
        //release the matrix, this releases the allocated space in memory, since mat contains a header that contains img info and a pointer that points to the matrix in the memory.
        mGray.release();
        mRgba.release();
        mZoomWindow.release();
        mZoomWindow2.release();
    }

    public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
        Log.i(TAG, "onCameraFrame method");


        //This method is a member of CvCameraViewListener2, and we must implement it.
        // In this method we get every frame from the camera and process it in order to track the objects.
        //inputFrame is the received frame from the camera.
        mRgba = inputFrame.rgba(); //convert the frame to rgba scale, then assign this value to the rgba Mat img matrix.
        mGray = inputFrame.gray(); //convert the frame to gray scale, then assign this value to the gray Mat img matrix.

        //Shall we consider Flipping the camera img horizontally.


        if (mAbsoluteFaceSize == 0) {
            int height = mGray.rows(); //get the height of the captured frame stored in mgray Mat array (rows), why gray to rgb???
            if (Math.round(height * mRelativeFaceSize) > 0) { //multiply that height with 0.2... Is the result > 0?
                //if yes this indicates that there is a frame that was captured (it's height is not zero), so set the face size to
                // Math.round(height * mRelativeFaceSize)
                mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
            }
        }

        if (mZoomWindow == null || mZoomWindow2 == null)
            CreateAuxiliaryMats();

        MatOfRect faces = new MatOfRect(); //a matrix that will contain rectangles around the face (including the faces inside the rectangles), it will be filled by detectMultiScale method.

        //if mJavaDetector is not null, this contains the face classifier  that we have loaded previously
        if (mJavaDetector != null)
            //if not null, use this classifier to detect faces.
            mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2,
                    2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
                    new Size(mAbsoluteFaceSize, mAbsoluteFaceSize),
                    new Size());
        //in th function detectMultiScale above,
        // faces is the array that will contain the rectangles around the detected face.
        // the 3rd param: specifies how much the image size is reduced at each image scale.
        //4th param:  Parameter specifying how many neighbors each candidate rectangle should have to retain it.
        //5:  :)
        //6: Minimum possible object size. Objects smaller than that are ignored (if you set a very small minimum value, your app will run heavily).
        //7: Maximum possible object size. Objects larger than that are ignored. Both minimum and maximum should be set carefully to avoid slow running of the app.

        Rect[] facesArray = faces.toArray(); //array of faces


        for (int i = 0; i < facesArray.length; i++) {
           /* Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(),
                    FACE_RECT_COLOR, 3);*/

            //Now draw rectangles around the obtained faces, and a circle at each rectangle center.

            //mrgba in the line bellow means that the rectangle should be drawn on the colored img.
            //facesArray[i].tl() returns a Point: Template class for 2D points specified by its coordinates x and y -> Template class
            // facesArray[i].x and facesArray[i].y are the x and y coords of the top left top corner.
            Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);

            //calculate the center in x and y coords.
            xCenter = (facesArray[i].x + facesArray[i].width + facesArray[i].x) / 2;
            yCenter = (facesArray[i].y + facesArray[i].y + facesArray[i].height) / 2;
            Point center = new Point(xCenter, yCenter); //store the center.
            //Imgproc.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3);

            Core.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3); //draw a red circle at the center of the face rectangle.

            /*Imgproc.putText(mRgba, "[" + center.x + "," + center.y + "]",
                    new Point(center.x + 20, center.y + 20),
                    Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
                            255));*/

            //write the coordinates of the rectangle center:
            Core.putText(mRgba, "[" + center.x + "," + center.y + "]",
                    new Point(center.x + 20, center.y + 20) , // this is the bottom left corner of the text string
                    Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
                            255));

            Rect r = facesArray[i]; //get the currect face, we want to use it to detect the eyes inside it.



            // compute the eye area
            //Rect (x, y, w, h)
            Rect eyearea = new Rect(r.x + r.width / 8,
                    (int) (r.y + (r.height / 4.5)), r.width - 2 * r.width / 8,
                    (int) (r.height / 3.0));
            // split it
            Rect eyearea_right = new Rect(r.x + r.width / 16,
                    (int) (r.y + (r.height / 4.5)),
                    (r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
            Rect eyearea_left = new Rect(r.x + r.width / 16
                    + (r.width - 2 * r.width / 16) / 2,
                    (int) (r.y + (r.height / 4.5)),
                    (r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
            // draw the area - mGray is working grayscale mat, if you want to
            // see area in rgb preview, change mGray to mRgba
            /*Imgproc.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
                    new Scalar(255, 0, 0, 255), 2);
            Imgproc.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
                    new Scalar(255, 0, 0, 255), 2);*/
            Core.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
                    new Scalar(255, 0, 0, 255), 2);
            Core.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
                    new Scalar(255, 0, 0, 255), 2);

            if (learn_frames < 5) {
                // no learned frames -> Learn templates from at least 5 frames..
                templateR = get_template(mJavaDetectorEye, eyearea_right, 24);
                templateL = get_template(mJavaDetectorEye, eyearea_left, 24);
                learn_frames++;
            } else {
                // Learning finished, use the new templates for template
                // matching
                match_eye(eyearea_right, templateR, method);
                match_eye(eyearea_left, templateL, method);

            }


            // cut eye areas and put them to zoom windows
            Imgproc.resize(mRgba.submat(eyearea_left), mZoomWindow2,
                    mZoomWindow2.size());
            Imgproc.resize(mRgba.submat(eyearea_right), mZoomWindow,
                    mZoomWindow.size());


        }

        return mRgba;
    }



    private void setMinFaceSize(float faceSize) {
        mRelativeFaceSize = faceSize;
        mAbsoluteFaceSize = 0;
    }


    private void CreateAuxiliaryMats() {
        if (mGray.empty())
            return;

        int rows = mGray.rows();
        int cols = mGray.cols();

        if (mZoomWindow == null) {
            mZoomWindow = mRgba.submat(rows / 2 + rows / 10, rows, cols / 2
                    + cols / 10, cols);
            mZoomWindow2 = mRgba.submat(0, rows / 2 - rows / 10, cols / 2
                    + cols / 10, cols);
        }

    }

    private void match_eye(Rect area, Mat mTemplate, int type) {
        Point matchLoc;
        Mat mROI = mGray.submat(area);
        int result_cols = mROI.cols() - mTemplate.cols() + 1;
        int result_rows = mROI.rows() - mTemplate.rows() + 1;
        // Check for bad template size
        if (mTemplate.cols() == 0 || mTemplate.rows() == 0) {
            return ;
        }
        Mat mResult = new Mat(result_cols, result_rows, CvType.CV_8U);

        switch (type) {
            case TM_SQDIFF:
                Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF);
                break;
            case TM_SQDIFF_NORMED:
                Imgproc.matchTemplate(mROI, mTemplate, mResult,
                        Imgproc.TM_SQDIFF_NORMED);
                break;
            case TM_CCOEFF:
                Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF);
                break;
            case TM_CCOEFF_NORMED:
                Imgproc.matchTemplate(mROI, mTemplate, mResult,
                        Imgproc.TM_CCOEFF_NORMED);
                break;
            case TM_CCORR:
                Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR);
                break;
            case TM_CCORR_NORMED:
                Imgproc.matchTemplate(mROI, mTemplate, mResult,
                        Imgproc.TM_CCORR_NORMED);
                break;
        }

        Core.MinMaxLocResult mmres = Core.minMaxLoc(mResult);
        // there is difference in matching methods - best match is max/min value
        if (type == TM_SQDIFF || type == TM_SQDIFF_NORMED) {
            matchLoc = mmres.minLoc;
        } else {
            matchLoc = mmres.maxLoc;
        }

        Point matchLoc_tx = new Point(matchLoc.x + area.x, matchLoc.y + area.y);
        Point matchLoc_ty = new Point(matchLoc.x + mTemplate.cols() + area.x,
                matchLoc.y + mTemplate.rows() + area.y);
        /*Imgproc.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
                255));*/
        Core.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
                255));
        Rect rec = new Rect(matchLoc_tx,matchLoc_ty);


    }

    private Mat get_template(CascadeClassifier clasificator, Rect area, int size) {
        Mat template = new Mat(); //prepare a Mat which will serve as a template for eyes.
        Mat mROI = mGray.submat(area); //detect only region of interest which is represented by the area. So, from the total Mat get only the submat that represent roi.


        MatOfRect eyes = new MatOfRect(); //will be around eyes (including eyes), this will be filled by detectMultiScale
        Point iris = new Point(); //to identify iris.

        Rect eye_template = new Rect();


        clasificator.detectMultiScale(mROI, eyes, 1.15, 2,
                Objdetect.CASCADE_FIND_BIGGEST_OBJECT
                        | Objdetect.CASCADE_SCALE_IMAGE, new Size(30, 30),
                new Size());

        Rect[] eyesArray = eyes.toArray(); //get the detected eyes
        for (int i = 0; i < eyesArray.length;) {
            Rect e = eyesArray[i];
            e.x = area.x + e.x; //the starting x coordinates of the rect (area) around the eye + the area
            e.y = area.y + e.y;
            Rect eye_only_rectangle = new Rect((int) e.tl().x,
                    (int) (e.tl().y + e.height * 0.4), (int) e.width,
                    (int) (e.height * 0.6));
            mROI = mGray.submat(eye_only_rectangle);
            Mat vyrez = mRgba.submat(eye_only_rectangle);


            Core.MinMaxLocResult mmG = Core.minMaxLoc(mROI);
            // Imgproc.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
            Core.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
            iris.x = mmG.minLoc.x + eye_only_rectangle.x;
            iris.y = mmG.minLoc.y + eye_only_rectangle.y;
            eye_template = new Rect((int) iris.x - size / 2, (int) iris.y
                    - size / 2, size, size);
            /*Imgproc.rectangle(mRgba, eye_template.tl(), eye_template.br(),
                    new Scalar(255, 0, 0, 255), 2);*/
            Core.rectangle(mRgba, eye_template.tl(), eye_template.br(),
                    new Scalar(255, 0, 0, 255), 2);
            template = (mGray.submat(eye_template)).clone();
            return template;
        }
        return template;
    }

    public void onRecreateClick(View v)
    {
        learn_frames = 0;
    }
}

请注意,相机成功打开进行录制,并且加载了 xml 文件,但之后没有任何反应。我将 window 大小设置为 100 x 100 只是为了测试目的,我知道它应该是 1 x 1.

谁能告诉我如何解决这个问题?我如何 运行 opencv 摄像机从后台服务进行面部和眼睛跟踪?

我尝试像您一样在服务中获取 opencv 摄像头,但我无法获取 onCameraFrame 和 onCameraViewStarted 回调,这意味着摄像头未初始化。经过一系列尝试:

  • 将预览设置为 INVISIBLE/GONE -> 不起作用
  • 将预览大小设置为像素大小 1×1 或尊重 相机的纵横比 4x3 -> 不工作
  • 设置屏幕外预览 -> 不起作用

我发现 opencv 相机需要使用视图大小进行预览,只有这样我才能获得 onCameraFrame 回调。 幸运的是,我可以在相机预览的顶部放置另一个元素来隐藏它,只显示警报。

您可以找到一个简单的 CameraInService 示例here,希望对您有用。