如何统一扩展列表以包括外推平均值?

How can a list be extended uniformly to include extrapolated mean values?

我有一个 Python 模块,它提供调色板和处理它们的实用程序。调色板对象简单地继承自 list,并且只是在 HEX 字符串中指定的颜色列表。调色板对象能够扩展自身以根据需要提供尽可能多的颜色。想象一个包含许多不同数据集的图形:可以要求调色板将其拥有的颜色数量扩展到为每个图形数据集提供唯一颜色所需的范围。它通过简单地取相邻颜色的平均值并插入这个新的平均颜色来做到这一点。

extend_palette 功能有效,但它没有统一扩展调色板。例如,调色板开头可能如下所示:

扩展到15种颜色还是可以用的:

将其扩展到 30 种颜色会使扩展算法的问题变得明显;仅在颜色列表的一端添加新颜色:

模块的功能extend_palette应该如何更改才能使扩展的新颜色更均匀地分布在调色板中?

代码如下(特别关注函数 extend_palette 和其他代码,以便于实验):

def clamp(x): 
    return max(0, min(x, 255))

def RGB_to_HEX(RGB_tuple):
    # This function returns a HEX string given an RGB tuple.
    r = RGB_tuple[0]
    g = RGB_tuple[1]
    b = RGB_tuple[2]
    return "#{0:02x}{1:02x}{2:02x}".format(clamp(r), clamp(g), clamp(b))

def HEX_to_RGB(HEX_string):
    # This function returns an RGB tuple given a HEX string.
    HEX = HEX_string.lstrip("#")
    HEX_length = len(HEX)
    return tuple(
        int(HEX[i:i + HEX_length // 3], 16) for i in range(
            0,
            HEX_length,
            HEX_length // 3
        )
    )

def mean_color(colors_in_HEX):
    # This function returns a HEX string that represents the mean color of a
    # list of colors represented by HEX strings.
    colors_in_RGB = []
    for color_in_HEX in colors_in_HEX:
        colors_in_RGB.append(HEX_to_RGB(color_in_HEX))
    sum_r = 0
    sum_g = 0
    sum_b = 0
    for color_in_RGB in colors_in_RGB:
        sum_r += color_in_RGB[0]
        sum_g += color_in_RGB[1]
        sum_b += color_in_RGB[2]
    mean_r = sum_r / len(colors_in_RGB)
    mean_g = sum_g / len(colors_in_RGB)
    mean_b = sum_b / len(colors_in_RGB)
    return RGB_to_HEX((mean_r, mean_g, mean_b))

class Palette(list):

    def __init__(
        self,
        name        = None, # string name
        description = None, # string description
        colors      = None, # list of colors
        *args
        ):
        super(Palette, self).__init__(*args)
        self._name          = name
        self._description   = description
        self.extend(colors)

    def name(
        self
        ):
        return self._name

    def set_name(
        self,
        name = None
        ):
        self._name = name

    def description(
        self
        ):
        return self._description

    def set_description(
        self,
        description = None
        ):
        self._description = description

    def extend_palette(
        self,
        minimum_number_of_colors_needed = 15
        ):
        colors = extend_palette(
            colors = self,
            minimum_number_of_colors_needed = minimum_number_of_colors_needed
        )
        self = colors

    def save_image_of_palette(
        self,
        filename = "palette.png"
        ):
        save_image_of_palette(
            colors   = self,
            filename = filename
        )

def extend_palette(
    colors = None, # list of HEX string colors
    minimum_number_of_colors_needed = 15
    ):
    while len(colors) < minimum_number_of_colors_needed:
        for index in range(1, len(colors), 2):
            colors.insert(index, mean_color([colors[index - 1], colors[index]]))
    return colors

def save_image_of_palette(
    colors   = None, # list of HEX string colors
    filename = "palette.png"
    ):
    import numpy
    import Image
    scale_x = 200
    scale_y = 124
    data = numpy.zeros((1, len(colors), 3), dtype = numpy.uint8)
    index = -1
    for color in colors:
        index += 1
        color_RGB = HEX_to_RGB(color)
        data[0, index] = [color_RGB[0], color_RGB[1], color_RGB[2]]
    data = numpy.repeat(data, scale_x, axis=0)
    data = numpy.repeat(data, scale_y, axis=1)
    image = Image.fromarray(data)
    image.save(filename)

# Define color palettes.
palettes = []
palettes.append(Palette(
    name        = "palette1",
    description = "primary colors for white background",
    colors      = [
                  "#fc0000",
                  "#ffae3a",
                  "#00ac00",
                  "#6665ec",
                  "#a9a9a9",
                  ]
))
palettes.append(Palette(
    name        = "palette2",
    description = "ATLAS clarity",
    colors      = [
                  "#FEFEFE",
                  "#AACCFF",
                  "#649800",
                  "#9A33CC",
                  "#EE2200",
                  ]
))

def save_images_of_palettes():
    for index, palette in enumerate(palettes):
        save_image_of_palette(
            colors   = palette,
            filename = "palette_{index}.png".format(index = index + 1)
        )

def access_palette(
    name = "palette1"
    ):
    for palette in palettes:
        if palette.name() == name:
            return palette
    return None

我认为如果你从一个简化的例子开始,你遇到的问题会更容易理解:

nums = [1, 100]

def extend_nums(nums, min_needed):
    while len(nums) < min_needed:
        for index in range(1, len(nums), 2):
            nums.insert(index, mean(nums[index - 1], nums[index]))
    return nums


def mean(x, y):
    return (x + y) / 2

我在这里复制了您的代码,但使用数字而不是颜色来简化操作。这是我 运行 时发生的情况:

>>> nums = [0, 100]
>>> extend_nums(nums, 5)
[0, 12.5, 25.0, 37.5, 50.0, 100]

我们这里有什么?

  • 50 是 0 到 100 之间的平均值。
  • 25 是 0 到 50 之间的平均值。
  • 12.5 是 0 到 25 之间的平均值。
  • 37.5 是 25 到 50 之间的平均值。

奇怪,不是吗?嗯,不:我正在就地修改 nums。当我插入新项目时,for 循环中 index 的含义发生变化: nums[3]nums.insert(1, something).

前后发生变化

让我们尝试在每次迭代时创建一个新列表:

def extend_nums(nums, min_needed):
    while len(nums) < min_needed:
        new_nums = []  # This new list will hold the extended nums.
        for index in range(1, len(nums)):
            new_nums.append(nums[index - 1])
            new_nums.append(mean(nums[index - 1], nums[index]))
        new_nums.append(nums[-1])
        nums = new_nums
    return nums

让我们试试:

>>> nums = [0, 100]
>>> extend_nums(nums, 5)
[0, 25.0, 50.0, 75.0, 100]

这个解决方案有效(还有改进的余地)。为什么?因为在我们新的 for 循环中,index 具有正确的含义。以前,我们在不移动 index.

的情况下插入项目

这个代码

while len(colors) < minimum_number_of_colors_needed:
    for index in range(1, len(colors), 2):
        colors.insert(index, mean_color([colors[index - 1], colors[index]]))

不均匀分布平均颜色。通过运行:

可以看到效果
colors = range(5)
while len(colors) < 15:
    for index in range(1, len(colors), 2):
        colors.insert(index, 99)
print(colors)

产生

[0, 99, 99, 99, 99, 99, 99, 99, 1, 99, 99, 99, 2, 3, 4]

太多的手段,用 99 表示,放在开头附近,none 放在结尾附近。


幸运的是,既然你有 numpy,你可以使用 np.interp 来均匀地插值颜色。 例如,如果您有一个包含数据点 (0, 10)、(0.5, 20)、(1, 30) 的函数,那么您可以在 x = [0, 0.33, 0.67, 1] 处进行插值以找到相应的 y值:

In [80]: np.interp([0, 0.33, 0.67, 1], [0, 0.5, 1], [10, 20, 30])
Out[80]: array([ 10. ,  16.6,  23.4,  30. ])

由于 np.interp 仅对一维数组进行操作,我们可以将其分别应用于每个 RGB 通道:

[np.interp(np.linspace(0,1,min_colors), np.linspace(0,1,ncolors), self.rgb[:,i]) 
 for i in range(nchannels)])

例如,

import numpy as np
import Image

def RGB_to_HEX(RGB_tuple):
    """
    Return a HEX string given an RGB tuple.
    """
    return "#{0:02x}{1:02x}{2:02x}".format(*np.clip(RGB_tuple, 0, 255))


def HEX_to_RGB(HEX_string):
    """
    Return an RGB tuple given a HEX string.
    """
    HEX = HEX_string.lstrip("#")
    HEX_length = len(HEX)
    return tuple(
        int(HEX[i:i + HEX_length // 3], 16) for i in range(
            0,
            HEX_length,
            HEX_length // 3 ))

class Palette(object):

    def __init__(self, name=None, description=None, colors=None, *args):
        super(Palette, self).__init__(*args)
        self.name = name
        self.description = description
        self.rgb = np.array(colors)

    @classmethod
    def from_hex(cls, name=None, description=None, colors=None, *args):
        colors = np.array([HEX_to_RGB(c) for c in colors])
        return cls(name, description, colors, *args)

    def to_hex(self):
        return [RGB_to_HEX(color) for color in self.rgb]

    def extend_palette(self, min_colors=15):
        ncolors, nchannels = self.rgb.shape
        if ncolors >= min_colors:
            return self.rgb

        return np.column_stack(
            [np.interp(
                np.linspace(0,1,min_colors), np.linspace(0,1,ncolors), self.rgb[:,i]) 
             for i in range(nchannels)])

def save_image_of_palette(rgb, filename="palette.png"):
    scale_x = 200
    scale_y = 124
    data = (np.kron(rgb[np.newaxis,...], np.ones((scale_x, scale_y, 1)))
            .astype(np.uint8))
    image = Image.fromarray(data)
    image.save(filename)


# Define color palettes.
palettes = []
palettes.append(Palette.from_hex(
    name="palette1",
    description="primary colors for white background",
    colors=[
        "#fc0000",
        "#ffae3a",
        "#00ac00",
        "#6665ec",
        "#a9a9a9", ]))
palettes.append(Palette.from_hex(
    name="palette2",
    description="ATLAS clarity",
    colors=[
        "#FEFEFE",
        "#AACCFF",
        "#649800",
        "#9A33CC",
        "#EE2200",]))
palettes = {p.name:p for p in palettes}


p = palettes['palette1']
save_image_of_palette(p.extend_palette(), '/tmp/out.png')

产量


请注意,您可能会发现在 HSV 色彩空间(而不是 RGB 色彩空间)中进行插值会得到 better results