Spark:测试 RDD 是否为空的有效方法

Spark: Efficient way to test if an RDD is empty

RDD 上没有 isEmpty 方法,那么测试 RDD 是否为空的最有效方法是什么?

RDD.isEmpty() 将成为 Spark 1.3.0 的一部分。

根据this apache mail-thread中的建议和后来对该答案的一些评论,我做了一些本地小实验。最好的方法是使用 take(1).length==0.

def isEmpty[T](rdd : RDD[T]) = {
  rdd.take(1).length == 0 
}

O(1)中应该运行除非RDD为空,在这种情况下它与分区数成线性关系。

感谢 Josh Rosen 和 Nick Chammas 指出这一点。

注意:如果 RDD 的类型为 RDD[Nothing],则此操作失败,例如isEmpty(sc.parallelize(Seq())),但这在现实生活中可能不是问题。 isEmpty(sc.parallelize(Seq[Any]())) 工作正常。


编辑:

  • 编辑 1: 添加了 take(1)==0 方法,感谢评论。

我原来的建议:使用mapPartitions

def isEmpty[T](rdd : RDD[T]) = {
  rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_) 
}

它应该在分区数量上进行扩展,并且不如 take(1) 干净。然而,它对 RDD[Nothing].

类型的 RDD 是健壮的

实验:

我用这段代码来计时。

def time(n : Long, f : (RDD[Long]) => Boolean): Unit = {
  val start = System.currentTimeMillis()
  val rdd = sc.parallelize(1L to n, numSlices = 100)
  val result = f(rdd)
  printf("Time: " + (System.currentTimeMillis() - start) + "   Result: " + result)
}

time(1000000000L, rdd => rdd.take(1).length == 0L)
time(1000000000L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(1000000000L, rdd => rdd.count() == 0L)
time(1000000000L, rdd => rdd.takeSample(true, 1).isEmpty)
time(1000000000L, rdd => rdd.fold(0)(_ + _) == 0L)

time(1L, rdd => rdd.take(1).length == 0L)
time(1L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(1L, rdd => rdd.count() == 0L)
time(1L, rdd => rdd.takeSample(true, 1).isEmpty)
time(1L, rdd => rdd.fold(0)(_ + _) == 0L)

time(0L, rdd => rdd.take(1).length == 0L)
time(0L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(0L, rdd => rdd.count() == 0L)
time(0L, rdd => rdd.takeSample(true, 1).isEmpty)
time(0L, rdd => rdd.fold(0)(_ + _) == 0L)

在我有 3 个工作内核的本地机器上我得到了这些结果

Time:    21   Result: false
Time:    75   Result: false
Time:  8664   Result: false
Time: 18266   Result: false
Time: 23836   Result: false

Time:   113   Result: false
Time:   101   Result: false
Time:    68   Result: false
Time:   221   Result: false
Time:    46   Result: false

Time:    79   Result: true
Time:    93   Result: true
Time:    79   Result: true
Time:   100   Result: true
Time:    64   Result: true

截至 Spark 1.3 the isEmpty() is part of the RDD api. A fix that was causing isEmpty to fail was later fixed in Spark 1.4

对于 DataFrame 你可以这样做:

val df: DataFrame = ...
df.rdd.isEmpty()

这里是从 RDD 实现(从 1.4.1 开始)的代码粘贴。

  /**
   * @note due to complications in the internal implementation, this method will raise an
   * exception if called on an RDD of `Nothing` or `Null`. This may be come up in practice
   * because, for example, the type of `parallelize(Seq())` is `RDD[Nothing]`.
   * (`parallelize(Seq())` should be avoided anyway in favor of `parallelize(Seq[T]())`.)
   * @return true if and only if the RDD contains no elements at all. Note that an RDD
   *         may be empty even when it has at least 1 partition.
   */
  def isEmpty(): Boolean = withScope {
    partitions.length == 0 || take(1).length == 0
  }