pandas重采样但不进行统计

pandas resampling without performing statistics

我有一个五分钟的数据帧:

rng = pd.date_range('1/1/2011', periods=60, freq='5Min')
df = pd.DataFrame(np.random.randn(60, 4), index=rng, columns=['A', 'B', 'C', 'D'])

                            A         B         C         D
2011-01-01 00:00:00  1.287045 -0.621473  0.482130  1.886648
2011-01-01 00:05:00  0.402645 -1.335942 -0.609894 -0.589782
2011-01-01 00:10:00 -0.311789  0.342995 -0.875089 -0.781499
2011-01-01 00:15:00  1.970683  0.471876  1.042425 -0.128274
2011-01-01 00:20:00 -1.900357 -0.718225 -3.168920 -0.355735
2011-01-01 00:25:00  1.128843 -0.097980  1.130860 -1.045019
2011-01-01 00:30:00 -0.261523  0.379652 -0.385604 -0.910902

我想仅对 15 分钟间隔内的数据重新采样,但不汇总到统计数据中(我不想要均值、中值、标准差)。我想子采样并获取 15 分钟内的实际数据interval.Is 有内置方法可以做到这一点吗?

我的输出是:

                            A         B         C         D                 
2011-01-01 00:00:00  1.287045 -0.621473  0.482130  1.886648                 
2011-01-01 00:15:00  1.970683  0.471876  1.042425 -0.128274                 
2011-01-01 00:30:00 -0.261523  0.379652 -0.385604 -0.910902                 

您可以重新采样到 15 分钟并取每组的 'first':

In [40]: df.resample('15min').first()
Out[40]:
                            A         B         C         D
2011-01-01 00:00:00 -0.415637 -1.345454  1.151189 -0.834548
2011-01-01 00:15:00  0.221777 -0.866306  0.932487 -1.243176
2011-01-01 00:30:00 -0.690039  0.778672 -0.527087 -0.156369
...

另一种方法是构建新的所需索引并重新索引(在这种情况下这需要更多工作,但在不规则时间序列的情况下,这确保它恰好每 15 分钟获取一次数据):

In [42]: new_rng = pd.date_range('1/1/2011', periods=20, freq='15min')

In [43]: df.reindex(new_rng)
Out[43]:
                            A         B         C         D
2011-01-01 00:00:00 -0.415637 -1.345454  1.151189 -0.834548
2011-01-01 00:15:00  0.221777 -0.866306  0.932487 -1.243176
2011-01-01 00:30:00 -0.690039  0.778672 -0.527087 -0.156369
...

函数 asfreq() 不做任何聚合:

df.asfreq('15min')