是什么导致我的矩阵向量乘法的 Cython 实现速度减慢 2 倍?

What is causing the 2x slowdown in my Cython implementation of matrix vector multiplication?

我目前正在尝试在 Cython 中实现基本矩阵向量乘法(作为 much larger project to reduce computation 的一部分),发现我的代码比 Numpy.dot.

慢 2 倍左右

我想知道是不是我遗漏了什么导致速度变慢的原因。我正在编写优化的 Cython 代码,声明变量类型,需要连续数组,并避免缓存未命中。我什至尝试将 Cython 作为包装器并调用本机 C 代码(见下文)。

我想知道:我还能做些什么来加快我的实现速度,使这个基本操作的运行速度与 NumPy 一样快?


我使用的 Cython 代码如下:

import numpy as np
cimport numpy as np
cimport cython

DTYPE = np.float64;
ctypedef np.float64_t DTYPE_T

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def matrix_vector_multiplication(np.ndarray[DTYPE_T, ndim=2] A, np.ndarray[DTYPE_T, ndim=1] x):

    cdef Py_ssize_t i, j
    cdef Py_ssize_t N = A.shape[0]
    cdef Py_ssize_t D = A.shape[1]
    cdef np.ndarray[DTYPE_T, ndim=1] y = np.empty(N, dtype = DTYPE)
    cdef DTYPE_T val

    for i in range(N):
        val = 0.0
        for j in range(D):
            val += A[i,j] * x[j]
        y[i] = val
    return y

我正在使用以下脚本编译此文件 (seMatrixVectorExample.pyx):

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy as np

ext_modules=[ Extension("seMatrixVectorExample",
                        ["seMatrixVectorExample.pyx"],
                        libraries=["m"],
                        extra_compile_args = ["-ffast-math"])]

setup(
    name = "seMatrixVectorExample",
    cmdclass = {"build_ext": build_ext},
    include_dirs = [np.get_include()],
    ext_modules = ext_modules
)

并使用以下测试脚本来评估性能:

import numpy as np
from seMatrixVectorExample import matrix_vector_multiplication
import time

n_rows, n_cols = 1e6, 100
np.random.seed(seed = 0)

#initialize data matrix X and label vector Y
A = np.random.random(size=(n_rows, n_cols))
np.require(A, requirements = ['C'])

x = np.random.random(size=n_cols)
x = np.require(x, requirements = ['C'])

start_time = time.time()
scores = matrix_vector_multiplication(A, x)
print "cython runtime = %1.5f seconds" % (time.time() - start_time)

start_time = time.time()
py_scores = np.exp(A.dot(x))
print "numpy runtime = %1.5f seconds" % (time.time() - start_time)

对于具有 n_rows = 10e6n_cols = 100 的测试矩阵,我得到:

cython runtime = 0.08852 seconds
numpy runtime = 0.04372 seconds

编辑: 值得一提的是,即使我在本机 C 代码中实现矩阵乘法并且仅使用 Cython 作为包装器,速度仍然会变慢。

void c_matrix_vector_multiplication(double* y, double* A, double* x, int N, int D) {

    int i, j;
    int index = 0;
    double val;

    for (i = 0; i < N; i++) {
        val = 0.0;
        for (j = 0; j < D; j++) {
            val = val + A[index] * x[j];
            index++;
            }
        y[i] = val;
        }
    return; 
}

这里是 Cython 包装器,它只是将指针发送到 yAx 的第一个元素。 :

import cython
import numpy as np
cimport numpy as np

DTYPE = np.float64;
ctypedef np.float64_t DTYPE_T

# declare the interface to the C code
cdef extern void c_multiply (double* y, double* A, double* x, int N, int D)

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def multiply(np.ndarray[DTYPE_T, ndim=2, mode="c"] A, np.ndarray[DTYPE_T, ndim=1, mode="c"] x):

    cdef int N = A.shape[0]
    cdef int D = A.shape[1]
    cdef np.ndarray[DTYPE_T, ndim=1, mode = "c"] y = np.empty(N, dtype = DTYPE)

    c_multiply (&y[0], &A[0,0], &x[0], N, D)

    return y

OK 终于获得了比 NumPy 更好的 运行 倍!

以下是(我认为)造成差异的原因:NumPy 正在调用 BLAS 函数,这些函数是用 Fortran 而不是 C 编码的,导致速度差异。

我认为这一点很重要,因为我之前的印象是 BLAS 函数是用 C 编码的,并且不明白为什么它们 运行 比第二个本地 C 实现明显快我发帖问了。

无论哪种情况,我现在都可以通过使用 Cython + 来自 scipy.linalg.cython_blas.

的 SciPy Cython BLAS 函数指针来复制性能

为了完整性,这里是新的 Cython 代码 blas_multiply.pyx:

import cython
import numpy as np
cimport numpy as np
cimport scipy.linalg.cython_blas as blas

DTYPE = np.float64
ctypedef np.float64_t DTYPE_T

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)

def blas_multiply(np.ndarray[DTYPE_T, ndim=2, mode="fortran"] A, np.ndarray[DTYPE_T, ndim=1, mode="fortran"] x):
    #calls dgemv from BLAS which computes y = alpha * trans(A) + beta * y
    #see: http://www.nag.com/numeric/fl/nagdoc_fl22/xhtml/F06/f06paf.xml

    cdef int N = A.shape[0]
    cdef int D = A.shape[1]
    cdef int lda = N
    cdef int incx = 1 #increments of x
    cdef int incy = 1 #increments of y
    cdef double alpha = 1.0
    cdef double beta = 0.0
    cdef np.ndarray[DTYPE_T, ndim=1, mode = "fortran"] y = np.empty(N, dtype = DTYPE)

    blas.dgemv("N", &N, &D, &alpha, &A[0,0], &lda, &x[0], &incx, &beta, &y[0], &incy)

    return y

这是我用来构建的代码:

!/usr/bin/env python

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

import numpy
import scipy

ext_modules=[ Extension("blas_multiply",
                        sources=["blas_multiply.pyx"],
                        include_dirs=[numpy.get_include(), scipy.get_include()],
                        libraries=["m"],
                        extra_compile_args = ["-ffast-math"])]

setup(
    cmdclass = {'build_ext': build_ext},
    include_dirs = [numpy.get_include(), scipy.get_include()],
    ext_modules = ext_modules,
)

这是测试代码(注意传递给 BLAS 函数的数组现在是 F_CONTIGUOUS

import numpy as np
from blas_multiply import blas_multiply
import time

#np.__config__.show()
n_rows, n_cols = 1e6, 100
np.random.seed(seed = 0)

#initialize data matrix X and label vector Y
X = np.random.random(size=(n_rows, n_cols))
Y = np.random.randint(low=0, high=2, size=(n_rows, 1))
Y[Y==0] = -1
Z = X*Y
Z.flags
Z = np.require(Z, requirements = ['F'])

rho_test = np.random.randint(low=-10, high=10, size= n_cols)
set_to_zero = np.random.choice(range(0, n_cols), size =(np.floor(n_cols/2), 1), replace=False)
rho_test[set_to_zero] = 0.0
rho_test = np.require(rho_test, dtype=Z.dtype, requirements = ['F'])

start_time = time.time()
scores = blas_multiply(Z, rho_test)
print "Cython runtime = %1.5f seconds" % (time.time() - start_time)


Z = np.require(Z, requirements = ['C'])
rho_test = np.require(rho_test, requirements = ['C'])
start_time = time.time()
py_scores = np.exp(Z.dot(rho_test))
print "Python runtime = %1.5f seconds" % (time.time() - start_time)

在我的机器上测试的结果是:

Cython runtime = 0.04556 seconds
Python runtime = 0.05110 seconds