在大型 numpy 三维数组上计算二维成对距离
Calculate two dimensional pairwise distance on a large numpy three dimensional array
我有一个 [pt_id, x, y, z]
形式的 300 万个点的 numpy 数组。目标是 return 所有具有欧氏距离的点对 min_d
和 max_d
.
欧氏距离在x
和y
之间,而不是在z
上。但是,我想保留具有 pt_id_from
、pt_id_to
、distance
属性的数组。
我正在使用 scipy 的距离来计算距离:
import scipy.spatial.distance
coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
['pt2', 2479539.000, 7287455.000, 4.900],
['pt3', 2479626.000, 7287458.000, 10.000],
['pt4', 2484097.000, 7292784.000, 8.800],
['pt5', 2484106.000, 7293079.000, 7.300],
['pt6', 2484095.000, 7292891.000, 11.100]])
dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
np.savetxt('test.out', scipy.spatial.distance.squareform(dists), delimiter=',')
我应该如何处理 return 形式的数组:[pt_id_from, pt_id_to, distance]
?
您可以使用 np.where
获取范围内的距离坐标,然后以您的格式生成新列表,过滤相同的对。像这样:
>>> import scipy.spatial.distance
>>> import numpy as np
>>> coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
... ['pt2', 2479539.000, 7287455.000, 4.900],
... ['pt3', 2479626.000, 7287458.000, 10.000],
... ['pt4', 2484097.000, 7292784.000, 8.800],
... ['pt5', 2484106.000, 7293079.000, 7.300],
... ['pt6', 2484095.000, 7292891.000, 11.100]])
>>>
>>> dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
>>> dists = scipy.spatial.distance.squareform(dists)
>>> x, y = np.where((dists >= 8000) & (dists <= 30000))
>>> [(coords_arr[x[i]][0], coords_arr[y[i]][0], dists[y[i]][x[i]]) for i in xrange(len(x)) if x[i] < y[i]]
[('pt1', 'pt2', 28959.576688895162), ('pt1', 'pt3', 29042.897927032005)]
您只需循环遍历所有可能的组合,从数据中创建一个新数组。 itertools
模块非常适合这个。
n = coords_arr.shape[0] # number of points
D = scipy.spatial.distance.squareform(dists) # distance matrix
data = []
for i, j in itertools.combinations(range(n), 2):
pt_a = coords_arr[i, 0]
pt_b = coords_arr[j, 0]
d_ab = D[i,j]
data.append([pt_a, pt_b, d_ab])
result_arr = np.array(data)
如果内存有问题,您可能希望将距离查找从使用巨大的矩阵 D
更改为使用 i
和 [ 直接在 dists
中查找值=15=]索引.
嗯,['pt1', 'pt2', distance_as_number]
不太可能。混合数据类型最接近的是结构化数组,但是你不能做像 result[:2,0]
这样的事情。您必须分别索引字段名称和数组索引,例如:result[['a','b']][0]
.
这是我的解决方案:
import numpy as np
import scipy.spatial.distance
coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
['pt2', 2479539.000, 7287455.000, 4.900],
['pt3', 2479626.000, 7287458.000, 10.000],
['pt4', 2484097.000, 7292784.000, 8.800],
['pt5', 2484106.000, 7293079.000, 7.300],
['pt6', 2484095.000, 7292891.000, 11.100]])
dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
# Create a shortcut for `coords_arr.shape[0]` which is basically
# the total amount of points, hence `n`
n = coords_arr.shape[0]
# `a` and `b` contain the indices of the points which were used to compute the
# distances in dists. In this example:
# a = [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
# b = [1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5]
a = np.arange(n).repeat(np.arange(n-1, -1, -1))
b = np.hstack([range(x, n) for x in xrange(1, n)])
min_d = 1000
max_d = 10000
# Find out which distances are in range.
in_range = np.less_equal(min_d, dists) & np.less_equal(dists, max_d)
# Define the datatype of the structured array which will be the result.
dtype = [('a', '<f8', (3,)), ('b', '<f8', (3,)), ('dist', '<f8')]
# Create an empty array. We fill it later because it makes the code cleaner.
# Its size is given by the sum over `in_range` which is possible
# since True and False are equivalent to 1 and 0.
result = np.empty(np.sum(in_range), dtype=dtype)
# Fill the resulting array.
result['a'] = coords_arr[a[in_range], 1:4]
result['b'] = coords_arr[b[in_range], 1:4]
result['dist'] = dists[in_range]
print(result)
# In caste you don't want a structured array at all, this is what you can do:
result = np.hstack([coords_arr[a[in_range],1:],
coords_arr[b[in_range],1:],
dists[in_range, None]]).astype('<f8')
print(result)
结构化数组:
[([2479539.0, 7287455.0, 4.9], [2484097.0, 7292784.0, 8.8], 7012.389393067102)
([2479539.0, 7287455.0, 4.9], [2484106.0, 7293079.0, 7.3], 7244.7819152821985)
([2479539.0, 7287455.0, 4.9], [2484095.0, 7292891.0, 11.1], 7092.75912462844)
([2479626.0, 7287458.0, 10.0], [2484097.0, 7292784.0, 8.8], 6953.856268287403)
([2479626.0, 7287458.0, 10.0], [2484106.0, 7293079.0, 7.3], 7187.909362255481)
([2479626.0, 7287458.0, 10.0], [2484095.0, 7292891.0, 11.1], 7034.873843929257)]
ndarray:
[[2479539.0, 7287455.0, 4.9, 2484097.0, 7292784.0, 8.8, 7012.3893],
[2479539.0, 7287455.0, 4.9, 2484106.0, 7293079.0, 7.3, 7244.7819],
[2479539.0, 7287455.0, 4.9, 2484095.0, 7292891.0, 11.1, 7092.7591],
[2479626.0, 7287458.0, 10.0, 2484097.0, 7292784.0, 8.8, 6953.8562],
[2479626.0, 7287458.0, 10.0, 2484106.0, 7293079.0, 7.3, 7187.9093],
[2479626.0, 7287458.0, 10.0, 2484095.0, 7292891.0, 11.1, 7034.8738]]
我有一个 [pt_id, x, y, z]
形式的 300 万个点的 numpy 数组。目标是 return 所有具有欧氏距离的点对 min_d
和 max_d
.
欧氏距离在x
和y
之间,而不是在z
上。但是,我想保留具有 pt_id_from
、pt_id_to
、distance
属性的数组。
我正在使用 scipy 的距离来计算距离:
import scipy.spatial.distance
coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
['pt2', 2479539.000, 7287455.000, 4.900],
['pt3', 2479626.000, 7287458.000, 10.000],
['pt4', 2484097.000, 7292784.000, 8.800],
['pt5', 2484106.000, 7293079.000, 7.300],
['pt6', 2484095.000, 7292891.000, 11.100]])
dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
np.savetxt('test.out', scipy.spatial.distance.squareform(dists), delimiter=',')
我应该如何处理 return 形式的数组:[pt_id_from, pt_id_to, distance]
?
您可以使用 np.where
获取范围内的距离坐标,然后以您的格式生成新列表,过滤相同的对。像这样:
>>> import scipy.spatial.distance
>>> import numpy as np
>>> coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
... ['pt2', 2479539.000, 7287455.000, 4.900],
... ['pt3', 2479626.000, 7287458.000, 10.000],
... ['pt4', 2484097.000, 7292784.000, 8.800],
... ['pt5', 2484106.000, 7293079.000, 7.300],
... ['pt6', 2484095.000, 7292891.000, 11.100]])
>>>
>>> dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
>>> dists = scipy.spatial.distance.squareform(dists)
>>> x, y = np.where((dists >= 8000) & (dists <= 30000))
>>> [(coords_arr[x[i]][0], coords_arr[y[i]][0], dists[y[i]][x[i]]) for i in xrange(len(x)) if x[i] < y[i]]
[('pt1', 'pt2', 28959.576688895162), ('pt1', 'pt3', 29042.897927032005)]
您只需循环遍历所有可能的组合,从数据中创建一个新数组。 itertools
模块非常适合这个。
n = coords_arr.shape[0] # number of points
D = scipy.spatial.distance.squareform(dists) # distance matrix
data = []
for i, j in itertools.combinations(range(n), 2):
pt_a = coords_arr[i, 0]
pt_b = coords_arr[j, 0]
d_ab = D[i,j]
data.append([pt_a, pt_b, d_ab])
result_arr = np.array(data)
如果内存有问题,您可能希望将距离查找从使用巨大的矩阵 D
更改为使用 i
和 [ 直接在 dists
中查找值=15=]索引.
嗯,['pt1', 'pt2', distance_as_number]
不太可能。混合数据类型最接近的是结构化数组,但是你不能做像 result[:2,0]
这样的事情。您必须分别索引字段名称和数组索引,例如:result[['a','b']][0]
.
这是我的解决方案:
import numpy as np
import scipy.spatial.distance
coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
['pt2', 2479539.000, 7287455.000, 4.900],
['pt3', 2479626.000, 7287458.000, 10.000],
['pt4', 2484097.000, 7292784.000, 8.800],
['pt5', 2484106.000, 7293079.000, 7.300],
['pt6', 2484095.000, 7292891.000, 11.100]])
dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
# Create a shortcut for `coords_arr.shape[0]` which is basically
# the total amount of points, hence `n`
n = coords_arr.shape[0]
# `a` and `b` contain the indices of the points which were used to compute the
# distances in dists. In this example:
# a = [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
# b = [1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5]
a = np.arange(n).repeat(np.arange(n-1, -1, -1))
b = np.hstack([range(x, n) for x in xrange(1, n)])
min_d = 1000
max_d = 10000
# Find out which distances are in range.
in_range = np.less_equal(min_d, dists) & np.less_equal(dists, max_d)
# Define the datatype of the structured array which will be the result.
dtype = [('a', '<f8', (3,)), ('b', '<f8', (3,)), ('dist', '<f8')]
# Create an empty array. We fill it later because it makes the code cleaner.
# Its size is given by the sum over `in_range` which is possible
# since True and False are equivalent to 1 and 0.
result = np.empty(np.sum(in_range), dtype=dtype)
# Fill the resulting array.
result['a'] = coords_arr[a[in_range], 1:4]
result['b'] = coords_arr[b[in_range], 1:4]
result['dist'] = dists[in_range]
print(result)
# In caste you don't want a structured array at all, this is what you can do:
result = np.hstack([coords_arr[a[in_range],1:],
coords_arr[b[in_range],1:],
dists[in_range, None]]).astype('<f8')
print(result)
结构化数组:
[([2479539.0, 7287455.0, 4.9], [2484097.0, 7292784.0, 8.8], 7012.389393067102)
([2479539.0, 7287455.0, 4.9], [2484106.0, 7293079.0, 7.3], 7244.7819152821985)
([2479539.0, 7287455.0, 4.9], [2484095.0, 7292891.0, 11.1], 7092.75912462844)
([2479626.0, 7287458.0, 10.0], [2484097.0, 7292784.0, 8.8], 6953.856268287403)
([2479626.0, 7287458.0, 10.0], [2484106.0, 7293079.0, 7.3], 7187.909362255481)
([2479626.0, 7287458.0, 10.0], [2484095.0, 7292891.0, 11.1], 7034.873843929257)]
ndarray:
[[2479539.0, 7287455.0, 4.9, 2484097.0, 7292784.0, 8.8, 7012.3893],
[2479539.0, 7287455.0, 4.9, 2484106.0, 7293079.0, 7.3, 7244.7819],
[2479539.0, 7287455.0, 4.9, 2484095.0, 7292891.0, 11.1, 7092.7591],
[2479626.0, 7287458.0, 10.0, 2484097.0, 7292784.0, 8.8, 6953.8562],
[2479626.0, 7287458.0, 10.0, 2484106.0, 7293079.0, 7.3, 7187.9093],
[2479626.0, 7287458.0, 10.0, 2484095.0, 7292891.0, 11.1, 7034.8738]]